

ESTUDO DA SUSCETIBILIDADE A INUNDAÇÕES EM GUAÇUÍ-ES UTILIZANDO GEOPROCESSAMENTO

Henrique Araújo de Souza¹, Fabricia Benda de Oliveira¹, Carlos Henrique Rodrigues de Oliveira²

¹Universidade Federal do Espírito Santo, Alto Universitário, s/n, CP 16, Guararema - 29500-000, Alegre-ES, Brasil, henriqueas.geo@gmail.com, fabricia.oliveira@ufes.br.
²Instituto de Educação, Ciência e Tecnologia do Espírito Santo, Rodovia ES-482, Km 47, Distrito de Rive - 29500-000, Alegre - ES, Brasil, carlos.oliveira@ifes.edu.br.

Resumo

Com as constantes chuvas que vêm causando danos socioeconômicos, faz-se necessário realizar estudos para análise, mitigação e prevenção de inundação, tornando a cidade mais resiliente e preparada para esses eventos. Este trabalho está estruturado na análise de eventos de inundação, utilizando métodos de tomada de decisão, em especial lógica *fuzzy* e processo hierárquico analítico (AHP). Tem como objetivo principal a elaboração de um mapa de suscetibilidade a partir da utilização de fatores relacionados a inundações. O processo consistiu na obtenção de dados bibliográficos e geográficos, na criação de fatores que, posteriormente, foram submetidos à AHP e agrupados para geração do mapa final pela análise multicritério. O resultado demonstrou-se satisfatório, comprovando a eficácia do método utilizado na tomada de decisões, embora, devido ao tamanho dos pixels, tenha apresentado pouca definição.

Palavras-chave: Fuzzy. Análise multicritério. Áreas de risco.

Área do Conhecimento: Ciências Exatas e da Terra.

Introdução

A partir da ocorrência de um evento natural, é possível identificar seu causador, que pode ser classificado como geológico, hidrometeorológico ou biológico, e esses eventos podem ser agravados por interferência humana. Alguns fatores controladores podem atenuar ou agravar esses eventos, estando relacionados ao tipo de solo, tipo de rocha, vegetação, área construída e topografia. Para que uma área seja considerada de risco, é necessário que uma população possa ser afetada e que haja prejuízos socioeconômicos (KOBIYAMA et al., 2006).

As alterações causadas por ações humanas nos cursos fluviais têm resultado em constantes problemas de inundações e enchentes em áreas urbanas. Isso ocorre devido à retificação e canalização dos rios, bem como à impermeabilização dos solos. De acordo com a Secretaria Nacional de Proteção e Defesa Civil (SEDEC), as inundações são os desastres mais frequentemente atendidos pela Defesa Civil em todas as regiões do Brasil. Por isso, é essencial realizar simulações e modelagens que forneçam um instrumento técnico de fácil acesso para a população, o que é de grande importância para uma ocupação racional e segura do território (MARQUES, 2019).

Algumas legislações tratam das Áreas de Proteção Permanente (APP), que são zonas onde a construção é proibida devido à sua proximidade com áreas que precisam ser preservadas ou que oferecem riscos à população, como estabelecido na Lei n. 12.651/2012. Nota-se que essas são leis relativamente recentes, o que explica a existência de várias construções em áreas irregulares, como próximas a corpos d'água ou no terço superior de morros e morrotes. No município de Guaçuí, a história se repete: a cidade foi construída ao longo do Rio Veado e seus afluentes, sendo constantemente atingida por inundações durante períodos de chuvas intensas. Em 2020 e 2023, um total de 280 famílias foram afetadas pelas inundações, enquanto, em 2024, com um acumulado de chuva de 153,61 mm em 24 horas, 800 famílias foram atingidas.

Diante desse contexto regional e dos danos causados, diversos métodos podem ser adotados para a identificação de áreas suscetíveis a inundações. Neste trabalho, será utilizada a lógica *fuzzy* e a análise multicritério, especificamente o processo de hierárquico analítico. Esses são alguns dos

métodos empregados no geoprocessamento para a tomada de decisões e mapeamentos voltados para estudos ambientais, sendo, neste caso, aplicados à identificação de áreas suscetíveis a inundações.

Metodologia

Foram obtidos os dados cartográficos e montado o banco de dados geográficos. Esse processo auxilia na escolha dos melhores dados para a confecção do mapa final. A qualidade superior dos dados proporciona informações mais precisas e delimitações mais claras, resultando em um mapa de maior acurácia. Foram obtidos modelos digitais de elevação para gerar os mapas de declividade e altitude; outros dados foram coletados em *sites* do governo estadual e federal, sendo utilizados para gerar o mapa pluviométrico, o mapa de uso e cobertura do solo, além dos mapas geológico e pedológico.

Posteriormente, foram definidos os fatores, são eles pluviometria, altitude, declividade, uso e ocupação do solo, pedologia e geologia de acordo com a sua influência na suscetibilidade a inundações. As restrições funcionam como regras para limitar a análise a áreas específicas, atenuando ou realçando as alternativas. Os fatores foram classificados em quantitativos, que passaram diretamente pelo processo de fuzzyficação, e qualitativos, que foram divididos em classes, às quais foram atribuídos valores conforme uma ordem hierárquica arbitrária (WEBER, 2003).

Com os fatores definidos, a próxima etapa foi a definição das funções de pertinência *fuzzy* e dos pontos de controle. De acordo com cada fator, uma função específica foi utilizada. Aplicadas apenas a critérios quantitativos, as funções podem ser triangular, trapezoidal, gaussiana, sigmoidal, entre outras (BENDA; ALVES; OLIVEIRA, 2012).

Com a parte teórica estabelecida, seguiu-se para a aplicação prática no sistema de informações geográficas (SIG). Este processo envolveu a criação dos fatores, gerando um mapa para cada unidade temática referente a cada fator. Foi utilizada uma padronização de 0 a 1 para que os dados pudessem ser inseridos em operações algébricas e comparados. Os fatores quantitativos foram aplicados às funções de pertinência definidas na etapa anterior, enquanto os qualitativos seguiram a ordem hierárquica arbitrária.

Em seguida, foi criada uma matriz de comparação que gerou valores de autovetores, produto vetorial, índice de consistência, índice randômico e razão de consistência, sendo que esta última deve ter valor inferior a 0.1 para ser considerada consistente.

Com os cálculos realizados, o agrupamento dos fatores e das restrições no Processo de Hierarquia Analítica é feito, onde cada autovetor, com seu respectivo fator, foi multiplicado e somado aos demais fatores. Antes de serem agrupados, os fatores precisam ter o mesmo tamanho de pixel, largura e altura para ser executado no *software* SIG.

Resultados

Nos fatores altitude e declividade foram utilizadas as funções sigmoidais decrescentes, considerando que quanto maior a altitude e declividade menor a chance da água se acumular em determinada região. A declividade controla a velocidade em que a água escoa superficialmente e impulsiona ou diminui a infiltração de água no solo. Na pluviometria foi utilizada a função sigmoidal crescente, visto que quanto maior a quantidade de chuva, maior a chance de inundação, sendo os fatores citados agui quantitativos (MIRANDA et al., 2017).

Os fatores qualitativos definidos foram o de pedologia, geologia e cobertura do solo, onde a classe de cada parâmetro foi definida e pode ser observada nas Tabelas 1, 2 e 3.

Tabela 1 – Valores de adequabilidade atribuídos para as classes de geologia da área estudada.

Classes do Fator Geologia	Valor atribuído		
Áreas Urbanizadas	0,901961		
Gnaisses granulíticos	0,705882		
Charnockito	0,705882		
Ortogranulito	0,705882		
Depósitos aluvionares	0,705882		

Fonte: O autor (2024).

Tabela 2 - Valores de adequabilidade atribuídos para as classes de pedologia da área estudada.c

i di bid 2				
Classes do Fator Pedologia	Valor atribuído			
Nitossolo Vermelho + Argissolo Vermelho-Amarelo	0,549020			
Latossolo Amarelo + Argissolo Vermelho-Amarelo	0,431373			
Cambissolo Háplico + Latossolo Amarelo	0,035294			
Latossolo Vermelho-Amarelo + Cambissolo Háplico	0,333333			
Latossolo Vermelho-Amarelo + Latossolo Amarelo	0,027451			

Fonte: O autor (2024).

Tabela 3 – Valores de adequabilidade atribuídos para as classes de uso e cobertura do solo da área estudada.

Classes do Fator de Uso do solo	Valor atribuído		
Massa D'água	1		
Afloramento Rochoso	0,862745		
Brejo	0,803922		
Área Edificada	0,745098		
Extração Mineral	0,705882		
Solo Exposto	0,647059		
Macega	0,588235		
Outros	0,054902		
Cultivo Agrícola - Cana-de-Açúcar	0,529412		
Cultivo Agrícola - Café	0,509804		
Cultivo Agrícola - Outros Cultivos	0,470588		
Cultivo Agrícola - Banana	0,043137		
Pastagem	0,313725		
Mata nativa em estágio inicial de recuperação	0,254902		
Reflorestamento - Eucalipto	0,019608		
Mata Nativa	0,007843		

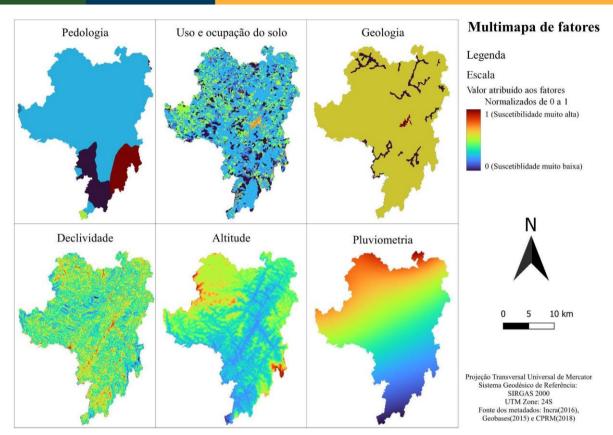
Fonte: O autor (2024).

O fator geologia obtido de CPRM, possuía a classe áreas urbanizadas que possui maior valor devido a sua proximidade a corpos d'água e construções, que diminuem a permeabilidade do solo. Para as rochas do embasamento cristalino foi considerado um valor alto, devido a sua baixa porosidade e o menor valor atribuído aos depósitos aluvionares se dá pela sua alta permeabilidade e porosidade.

A definição do fator pedologia levou em consideração a granulometria de cada solos, visto que solos arenosos têm a infiltração e percolação de água favorecidas, enquanto solos mais siltosos e argilosos tendem a um maior escoamento superficial, acumulando maior quantidade de água (PINHEIRO; POETA; KAUFMANN, 2009)

Para atribuição dos valores para o fator uso e cobertura do solo, baseou-se no trabalho de MAGALHÃES *et al.* (2011). O próprio autor utilizou pesos e com base nestes foi gerada a Tabela 3, estando os valores relacionados com a permeabilidade, proximidade de corpos hídricos e os valores referentes a vegetação estão relacionados com a absorção da umidade. Segue abaixo o mapa com os fatores padronizados, Figura 1.

Figura 1 - Mapa de fatores utilizados.



Fonte: O autor(2024).

Com os fatores criados foi elaborada a matriz de comparação, esta foi gerada para obter os valores de autovetores de respectivos fatores e verificar se a razão de consistência estava de acordo com o esperado, a mesma precisava possuir o valor menor que 0,1 e o obtido foi de 0,08603590107. A matriz comparativa utilizada segue no Quadro 1.

	Uso do Solo	Altitude	Pluviometria	Declividade	Pedologia	Geologia
Uso do Solo	1,00	3,00	3,00	5,00	6,00	6,00
Altitude	0,33	1,00	2,00	3,00	4,00	4,00
Pluviometria	0,33	0,50	1,00	2,00	5,00	6,00
Declividade	0,20	0,33	0,50	1,00	3,00	5,00
Pedologia	0,17	0,25	0,20	0,33	1,00	2,00
Geologia	0,17	0,25	0,17	0,20	0,50	1,00

Quadro 1 - Matriz de comparação dos fatores.

Fonte: O autor (2024)

Com os cálculos e autovetores gerados a partir da matriz do Quadro 1, gerou-se o mapa de suscetibilidade que evidenciou algumas localidades do município que possuem maiores possibilidades da ocorrência de inundação. Segue o resultado do mapa final na Figura 2.

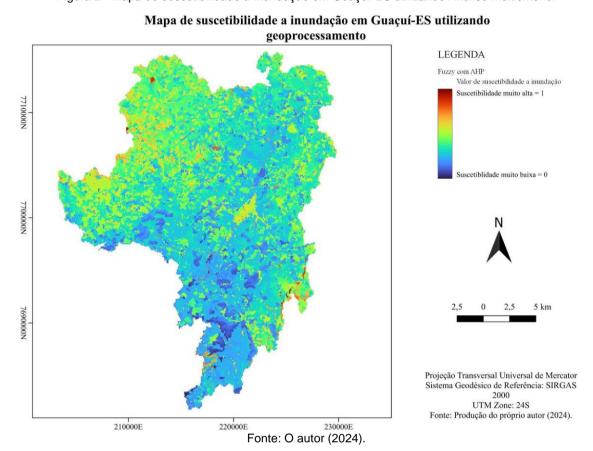


Figura 2 - Mapa de suscetibilidade à inundação em Guaçuí-ES utilizando Análise multicritério.

Discussão

O resultado demonstrou-se adequado, indicando as áreas com maior suscetibilidade em vermelho e as áreas em azul como de menor suscetibilidade, conforme mapa da Figura 1. A região noroeste apresentou, em geral, uma suscetibilidade mais alta devido aos fatores de pluviometria e altitude, deixando claro que essa região possui maiores índices de chuvas. O fator altitude atenuou o resultado, considerando que o acúmulo de água tende a descer para áreas mais baixas.

A sede municipal encontra-se em uma área com suscetibilidade média, o que torna o resultado próximo da realidade. Contudo, devido à escala e ao tamanho dos pixels, o resultado não ficou detalhado. Isso indica uma oportunidade para a realização de estudos futuros utilizando o mesmo método, mas com dados de melhor resolução espacial, focando especificamente na área da sede municipal.

Nos estudos realizados na área, a utilização desse método é importante para o planejamento, análise e tomada de decisões. Diversos problemas urbanos podem ser mitigados e prevenidos a partir da aplicação de métodos de geoprocessamento no planejamento e em ações de prevenção (SILVA, 2006; RAMOS *et al.*, 2018).

Conclusão

Os resultados auxiliaram na classificação e identificação de áreas e indicam a suscetibilidade do local a inundações, e que vale a pena se atentar para os períodos chuvosos. O resultado se deu como esperado, evidenciando que a utilização da lógica *fuzzy*, incorporada com AHP demonstra claramente o mapeamento de suscetibilidade a inundações, e que os métodos modernos estão cada vez mais precisos.

Se faz necessário que em estudos futuros, sejam utilizados dados de melhor qualidade e maior resolução para que o resultado seja mais representativo, principalmente em estudos que se queira dar ênfase na sede municipal. A lógica *fuzzy* e AHP se mostraram eficazes, mas todo o processo metodológico precisa ser rigoroso para obter um resultado final representativo. Estudos que atualizam o banco de dados geográficos também são de grande importância, fornecendo melhor qualidade dos dados.

Referências

BENDA, F.; ALVES, M. da G.; OLIVEIRA, C. H. R. de. Favorabilidade de áreas para implantação de aterros controlados no município de Campos de Goytacazes/RJ utilizando sistemas de informação geográfica. **Revista Brasileira de Cartografia (online)**, v. 64/1, p. 33-44, 2012

KOBIYAMA, M.; MENDONÇA, M.; MORENO, D. A.; MARCELINO, I. P. V. O.; MARCELINO, E. V.; GONÇALVES, E. F.; BRAZETTI, L. L. P.; GOERL, R. F.; MOLLERI, G. S. F.; RUDORFF, F. M. **Prevenção de Desastres Naturais: Conceitos Básicos.** Curitiba: Ed. Organic Trading, 2006. 109 p.

MAGALHÃES, I. A. L.; THIAGO, C. R. L.; AGRIZZI, D. V.; SANTOS, A. R. S. Uso de Geotecnologias para mapeamento de áreas de risco de inundação em Guaçuí, ES: Uma análise comparativa entre dois métodos. **Caderno de Geociências**, v. 8, p. 63-70, 2011.

MARQUES, A. M. S. **Análise e mapeamento de áreas de risco de inundação nas ocupações urbanas em torno do Rio Formate - Viana/Espírito Santo.** 2019. Trabalho de Conclusão de Curso (Pós-Graduação em Gestão Ambiental) – Instituto Federal do Espírito Santo – Campus Nova Venécia, Nova Venécia, 2019.

MIRANDA, M. R. B.; NETO, M. V. B.; JÚNIOR, E. M. M.; GIRÃO, O. Análise do perigo de inundação na bacia hidrográfica do rio Tapacurá-PE. In: **XVII Simpósio Brasileiro de Geografia Física Aplicada**, 2017. p. 1-12.

PINHEIRO, A.; POETA, L. T.; KAUFMANN, V. Capacidade de infiltração de água em solos sob diferentes usos e práticas de manejo agrícola. **Ambiente e Água**, v. 4, p. 188-199, 2009.

RAMOS, J. R. L.; ELMIRO, M. A. T.; NERO, M. A.; TEMBA, P. da C.; ROSA, G. Lógica fuzzy associada ao risco de inundação no município de Nova Lima/MG. Revista Geografias, v. 14, n. 2, p. 125-144, 2018.

SILVA, A. P. M. Elaboração de Manchas de Inundação para o Município de Itajubá, utilizando SIG. Itajubá, MG. UNIFEI. Engenharia da Energia, 2006.

WEBER, E. J. O uso do geoprocessamento no suporte a projetos de assentamentos rurais: Uma proposta metodológica. In: X Congresso Brasileiro de Engenharia de Avaliações e Perícias – X COBREAP, 2003.

Agradecimentos

Os autores agradecem a bolsa de Iniciação Científica disponibilizada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), com processo de número 146779/2023-1.