

CAPACIDADE DE TROCA CATIÔNICA, SATURAÇÃO POR CÁLCIO E MAGNÉSIO E DISPONIBILIDADE NO SOLO: UMA VISÃO CRÍTICA

Angélica Andrade Garcia, Isabele Andrade Garcia, Carlos Eduardo Costa Paiva, Felipe Vaz Andrade

¹Centro de Ciências Agrárias e Engenharias, Universidade Federal do Espírito Santo, Alto Universitário, s/nº, Guararema - 29500-000 - Alegre - ES, Brasil, andradeangelica687@gmail.com, isabeleandradegarcia@gmail.com, cecostapaiva@gmail.com, felipevazandrade@gmail.com

Resumo

Este estudo teve por objetivo analisar a disponibilidade de Ca e Mg e a taxa de ocupação em relação à capacidade de troca catiônica potencial (CTC) em solos de propriedades agrícolas no sul do Espírito Santo. Foram analisados e classificados os níveis de Ca e Mg trocáveis nos solos (4170 amostras), relacionando os teores com a CTC. Os teores de Ca e Mg foram determinados por espectrometria de absorção atômica. Os resultados mostraram que 53% e 38% dos teores de Ca e Mg foram classificados como níveis médios, respectivamente. E 66% das amostras apresentaram CTC interpretada como nível médio. Constatou-se que, mesmo em solos com alta CTC, os teores de Ca e Mg estavam predominantemente em níveis médios a baixos. Solos com baixa CTC podem apresentar alta taxa de ocupação por Ca e Mg, mas ainda assim conter quantidades absolutas desses nutrientes insuficientes para o desenvolvimento adequado das culturas. A taxa de ocupação tanto de Ca quanto de Mg na CTC é ineficiente para determinar sua disponibilidade no solo. Para uma interpretação precisa, deve-se considerar a classificação da CTC ao avaliar a disponibilidade desses nutrientes.

Palavras-chave: Análise química. Cálcio e Magnésio no solo. Fertilidade do solo. CTC do solo.

Área do Conhecimento: Engenharia agronômica. Agronomia. **Introdução**

Os nutrientes cálcio (Ca) e magnésio (Mg) são fundamentais para a fertilidade do solo e a nutrição das plantas. Ambos os nutrientes atuam como ativadores de diversas enzimas, incluindo aquelas envolvidas na absorção de outros nutrientes (Marschner, 2011). A presença adequada desses nutrientes no solo é importante para o desenvolvimento saudável das culturas e, consequentemente, para a produtividade.

No Espírito Santo, a agricultura é uma atividade econômica de grande importância, especialmente na região sul do Estado, onde predominam culturas como café conilon e arábica, cana-de-açúcar e há uma produção expressiva de frutas (Vital et al., 2024).

A variação nas concentrações de Ca e Mg no solo, bem como a capacidade de armazenamento dos nutrientes (CTC) nos solos podem influenciar a produtividade e a qualidade das colheitas. A compreensão da distribuição na CTC, dos teores e níveis desses nutrientes nos solos e a relação com a capacidade de armazenamento do solo é essencial para o manejo adequado da fertilidade do solo. O conhecimento dessas características fornece informações para a tomada de decisão sobre as práticas de manejo mais adequadas, para melhorar a fertilidade do solo e, consequentemente, a produtividade das lavouras.

Este estudo tem por objetivo analisar a disponibilidade de Ca e Mg e a taxa de ocupação em relação à CTC em solos de propriedades agrícolas situadas no sul do Estado do Espírito Santo.

Metodologia

As amostras de solo avaliadas neste estudo compõem grande parte da região sul do Estado do Espírito Santo, totalizando 4170 amostras, representadas pelos municípios de Alegre; Apiacá; Atílio Vivacqua; Cachoeiro de Itapemirim; Divino de São Lourenço; Guaçuí; Ibitirama; Jerônimo Monteiro; Mimoso do Sul; Muniz Freire; Muqui; São José do Calçado; Vargem Alta e outras cidades circunvizinhas do Estado.

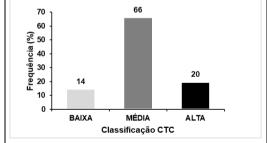
XXVIII Encontro Latino Americano de Iniciação Científica, XXIV Encontro Latino Americano de Pós-Graduação e p XIV Encontro de Iniciação à Docência - Universidade do Vale do Paraíba – 2024 Comentado [1]: Optamos por não utilizar a expressão 'nutrientes essenciais' em substituição a 'elementos essenciais', pois o termo seria redundante. O termo 'nutrientes' já implica, por definição de essencialidade, que são essenciais.

Neste trabalho foram analisados e classificados os níveis de Ca e Mg trocáveis nos solos. Adicionalmente, correlacionou-se os teores de Ca e Mg com a capacidade de troca catiônica potencial (CTC). Os teores de Ca e Mg foram extraídos usando KCl 1 mol L⁻¹ e determinados por espectrometria de absorção atômica. A CTC pH 7,0 (ou CTC potencial, T) foi calculada pela fórmula: T (cmol₀ dm-3) = SB + (H+AI), onde SB = soma de bases (Ca + Mg + K + Na); e H+AI = acidez potencial (Teixeira et al., 2017; De Campos et al., 2017).

Todos os procedimentos de análises químicas foram realizados no Laboratório de Análises de Solo do CCAE-UFES. Após a obtenção dos dados e classificação dos teores de Ca e Mg, foram elaborados gráficos avaliando as classes de interpretação (níveis) da CTC e dos teores de Ca e Mg no solo. Foi utilizado como critério de interpretação dos teores o Manual de Recomendação de Adubação e Calagem para o Estado do Espírito Sánto, 5ª Aproximação (Prezotti et al., 2007) (Tabela 1).

Tabela 1. Classes e limites de interpretação para nível de fertilidade de acordo com o Manual de Recomendação para o Espírito Santo.

Classificação


Atributo	Unidade	Baixo	Médio	Alto
CTC pH 7 (T)	cmol₀ dm ⁻³	< 4,5	4,5 - 10,0	> 10,0
Cálcio (Ca)	cmol _c dm ⁻³	< 1,5	1,5 - 4,0	> 4,0
Magnésio (Mg)	cmol _c dm ⁻³	< 0,5	0,5 - 1,0	> 1,0

Fonte: Prezotti et al., 2007.

Resultados

Os resultados revelaram que 66% das amostras analisadas apresentavam uma CTC classificada como média (faixa de interpretação de 4,5 a 10 cmol₀ dm³) (Figura 1), com valor médio de CTC de 7,01 cmol_c dm⁻³ (Tabela 2). Apenas 20% das amostras analisadas apresentaram CTC alta (Figura 1). Nos solos analisados, 80% das amostras foram classificadas como CTC baixa e média.

Fonte: os autores, 2024.

Para os teores de Ca trocáveis, 53% das amostras analisadas foram classificadas como teor médio (entre 1,5 a 4,0 cmol_c dm⁻³). Apenas 14% das amostras analisadas foram classificadas como alto teor de Ca (> 4,0 cmol_c dm⁻³) e 33% apresentaram um teor baixo de Ca (< 1,5 cmol_c dm⁻³) (Tabela 2).

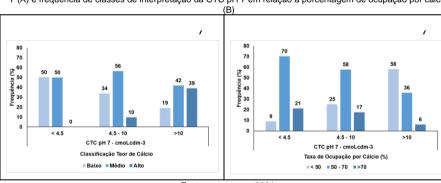
Para os valores de Mg observou-se o mesmo comportamento. Maior proporção de Mg classificado como nível médio (38%), 36% classificado como nível baixo, e 26% com teor de Mg alto (Tabela 2). Desta forma, ambos nutrientes tiveram maior frequência de teores médios tendendo a baixos.

XXVIII Encontro Latino Americano de Iniciação Científica, XXIV Encontro Latino Americano de Pós-Graduação ep XIV Encontro de Iniciação à Docência - Universidade do Vale do Paraíba - 2024

Tabela 2 - Classificação de teores de cálcio e magnésio, teor médio de cálcio, magnésio e CTC pH 7 (T), frequência de ocorrência de cada classe de interpretação, número de amostras de solo analisadas e desvio nadrão

				paul	au.					
Classificação	CTC		Cálcio				Magnésio			
	Média	Nº	Frequência (%)	Média	DP	Nº	Frequência (%)	Média	DP	
Baixo	3.28	1391	33	0.72	0.45	1522	36	0.26	0.15	
Médio	7.01	2194	53	2.58	0.67	1569	38	0.73	0.14	
Alto	13.12	585	14	5.91	3.13	1079	26	1.68	1.13	
Total	7.67	4170	100	2.42	2.09	4170	100	0.81	0.81	

N° = Número de amostras analisadas; DP = Desvio padrão da média; Média = Média dos resultados. Fonte: os autores, 2024.


Na figura 2A, nos solos que apresentaram CTC baixa (< 4,5 cmol_o dm⁻³), observamos que não houve amostra com teores altos de Ca (> 4 cmol_o dm⁻³), e cerca de 50% apresentaram teores médios (1,5 - 4,0 cmol_o dm⁻³) e baixos (< 1,5 cmol_o dm⁻³).

Percebe-se que os teores de Ca na CTC baixa (2A), obteve uma representatividade alta quando revertido para taxa de ocupação (2B). Quando a CTC pH 7 foi menor que 4,5 cmol_o dm⁻³, 21% das amostras apresentaram uma taxa de ocupação da CTC por Ca alta (>70%) e 70% estavam com a taxa de ocupação considerada ideal (50 - 70%) (Figura 2B).

Nos solos que apresentaram nível de CTC classificados como alta (> 10 cmol_o dm⁻³) (Figura 2A),

Nos solos que apresentaram nível de CTC classificados como alta (> 10 cmol_c dm⁻³) (Figura 2A), nota-se que teores baixos de Ca (<1,5 cmol_c dm⁻³) foram vistos em apenas 19% das amostras. No entanto, analisando-se o quanto esse Ca representa na CTC (Figura 2B), observou-se que 58% das amostras apresentaram baixa taxa de ocupação da CTC.

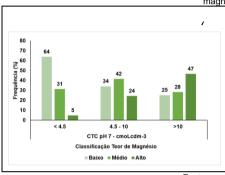
Figura 2 – Distribuição da frequência de classes de interpretação de cálcio em relação às classes de CTC pH 7 (A) e frequência de classes de interpretação da CTC pH 7 em relação a porcentagem de ocupação por cálcio

Fonte: os autores, 2024.

Para o Mg (Figura 3A), nos solos que apresentaram níveis de CTC classificadas como baixas (< 4,5 cmol_o dm⁻³), observou-se que 64% das amostras apresentaram teores baixos de Mg e apenas 5% teores altos. No entanto, analisando-se a taxa de ocupação de Mg na CTC baixa (Figura 3B), observouse que apenas 9% das amostras apresentaram baixa taxa de ocupação da CTC por Mg.

Nos solos que possuem alta CTC (> 10 cmole dm³) (Figura 3A) 47% das amostras apresentaram teores altos de Mg. Considerando a taxa de ocupação do Mg na CTC (Figura 3B), observa-se que 62% das amostras de solos apresentaram taxa média de ocupação da CTC por Mg.

XXVIII Encontro Latino Americano de Iniciação Científica, XXIV Encontro Latino Americano de Pós-Graduação e pXIV Encontro de Iniciação à Docência - Universidade do Vale do Paraíba – 2024



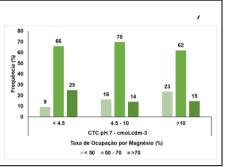


Figura 3 – Distribuição da frequência de classes de interpretação de magnésio em relação às classes de CTC pH 7 (A) e frequência de classes de interpretação da CTC pH 7 em relação a porcentagem de ocupação por magnésio (B).

Fonte: os autores, 2024.

Discussão

Em solos de regiões tropicais úmidas, como a região do Estado do Espírito Santo, os valores de CTC são normalmente baixos (ou médios tendendo a baixos), em função da predominância de caulinita e de óxidos de ferro e alumínio na fração argila (Dos Santos, 2009), que são minerais que possuem baixa CTC. Os valores de CTC encontrados neste trabalho, com 80% das amostras classificadas como CTC baixas e médias, refletem as características dos solos da região estudada, condizentes com maior atuação do intemperismo (caulinita e óxidos de ferro e alumínio predominantes na fração argila) e baixos teores de matéria orgânica.

A baixa disponibilidade de Ca e Mg está relacionada à escassez de Ca e Mg nos solos estudados, devido à falta de reposição adequada desses nutrientes, que são continuamente extraídos pelas culturas e muitas vezes não repostos pelo uso adequado de corretivos e adubação. Isso ressalta a importância de um manejo adequado da fertilidade dos solos na região.

A taxa de ocupação de Ca e Mg no solo depende tanto do teor desses nutrientes quanto da capacidade de troca de cátions (CTC). Em solos com baixa CTC, mesmo que a ocupação percentual de Ca e Mg sejam altas, as quantidades disponíveis podem ser insuficientes para a nutrição e o desenvolvimento adequado das culturas. Percebe-se que em solos que apresentam uma CTC baixa, pequenas quantidades de Ca e Mg seriam suficientes para elevar a taxa de ocupação na CTC, mesmo que a quantidade total disponível seja limitada ou baixa. Nesse sentido questiona-se aqui o uso da saturação de Ca e Mg na CTC como uma forma de avaliação da disponibilidade desses nutrientes no solo, levando a interpretações equivocadas, e consequentemente, um manejo inadequado do solo em relação a nutrição e produtividade das lavouras.

As amostras que apresentaram CTC elevada geralmente também demonstraram teores médios a altos de Ca e Mg. No entanto, devido à maior capacidade de armazenamento desses solos, a taxa de ocupação da CTC foi, na maioria dos casos, média tendendo a baixa. Isso porque para ocupar uma proporção significativa da CTC, em solos com alta CTC, seria necessária uma quantidade maior de Ca e Mg. Dessa forma, embora muitos solos apresentem teores elevados de Ca e Mg, a taxa de ocupação da CTC tende a ser média ou baixa, já que teores mais elevados desses nutrientes são necessários para se refletirem de forma representativa em uma CTC elevada.

Portanto, não é adequado observar somente a taxa de ocupação de Ca e/ou Mg na CTC, pois desta forma é impossível determinar a real disponibilidade desses nutrientes no solo e pode levar à interpretações equivocadas, se não houver associação com a capacidade de armazenamento dos solos. Assim, a análise da fertilidade do solo deve sempre considerar a CTC para a interpretação correta da disponibilidade de nutrientes.

Além disso, é importante realizar uma análise do solo regularmente para avaliar a necessidade de calagem e adubação, garantindo assim uma gestão adequada da fertilidade do solo. Compreender as

XXVIII Encontro Latino Americano de Iniciação Científica, XXIV Encontro Latino Americano de Pós-Graduação e p XIV Encontro de Iniciação à Docência - Universidade do Vale do Paraíba – 2024

características dos solos e a capacidade de retenção de nutrientes possibilita uma agricultura mais sustentável, maximizando o aproveitamento dos recursos e minimizando os impactos ambientais.

Conclusão

Os solos da região sul capixaba apresentam, em sua maioria, CTC classificada como média a baixa. A taxa de ocupação observada de maneira isolada não conduz à interpretação da real disponibilidade desses nutrientes no solo.

A disponibilidade de Ca e Mg deve ser o parâmetro para interpretação dos níveis de Ca e Mg no solo e não a taxa de ocupação.

Referências

DE CAMPOS, D. V. B. et al. Análises químicas: cátions trocáveis. In: DA SILVA, A. E. et al. Manual de métodos de análise de solo. 3 ed. Brasília: Embrapa, 2017. cap. 3, p. 233 - 237. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/181717/1/Manual-de-Metodos-de-Analise-de-Solo-2017.pdf. Acesso em: 5 abr. 2024.

DOS SANTOS, V. R. et al. Contribuição de argilominerais e da matéria orgânica na CTC dos solos do estado de alagoas. Revista Caatinga, v. 22, n. 1, p. 27-36, 2009. Disponível em: https://www.redalyc.org/pdf/2371/237117625005.pdf. Acesso em: 10 ago. 2024.

MARSCHNER, H. Mineral nutrition of higher plants. 2. ed. London: Academic Press, 2011.

Disponível em: https://books.google.com.br/books?hl=pt-

BR&lr=&id=yqKV3USG41cC&oi=fnd&pg=PP1&dq=MARSCHNER,+H.+Mineral+nutrition+of+higher+pl ants.+2.+ed.+London:+Academic+Press,+1995&ots=Vd4GS3w-Fg&sig=NFfwZjdKdhWEmnroFn0WTxr9cao. Acesso em: 5 abr. 2024.

PREZOTTI, L. C. et al. Manual de recomendação de calagem e adubação para o Estado do Espírito Santo - 5ª aproximação. Vitória: SEEA/INCAPER/ CEDAGRO, 2007. 16p.

TEIXEIRA, P. C. et al. Análises químicas: acidez potencial do solo. In: DA SILVA, A. E. et al. Manual de métodos de análise de solo. 3 ed. Brasília: Embrapa, 2017. cap. 3, p. 209 - 232. Disponível em: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/181717/1/Manual-de-Metodos-de-Analise-de-Solo-2017.pdf. Acesso em: 5 abr. 2024.

VITAL, E. A. et al. Desempenho da produção agropecuária no Espírito Santo nos anos 2010 a 2022. Vitória: INCAPER, 2024. Disponível em:

https://biblioteca.incaper.es.gov.br/digital/bitstream/item/4703/1/Doc311-DesempenhodaProducadoES-Incaper.pdf. Acesso em: 5 ago. 2024.

Agradecimentos

A Univap pelo suporte e estrutura, ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) e a Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) pelo