

ANÁLISE ESTATÍSTICA DA PRECIPITAÇÃO DIÁRIA NO MUNICÍPIO DE SÃO GABRIEL DA PALHA-ES

Eduardo Morgan Uliana¹, Camila Aparecida da Silva Martins¹, José Geraldo Ferreira da Silva², Edvaldo Fialho dos Reis³

¹Universidade Federal do Espírito Santo/Programa de Pós-Graduação em Produção Vegetal, Alto Universitário s/n², Alegre-ES, CEP.: 29.500-000, Caixa Postal 16, morganuliana@gmail.com; camila.cca@hotmail.com

²Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural/Meteorologia e Recursos Hídricos, Rua Afonso Sarlo, 160, Bento Ferreira, Vitória-ES, CEP.: 29.052-010, jgeraldo@incaper.es.gov.br

³Universidade Federal do Espírito Santo/Departamento de Engenharia Rural, Alto Universitário s/nº, Alegre-ES, CEP.: 29.500-000, Caixa Postal 16, edreis@cca.ufes.br

Resumo- O conhecimento da variabilidade sazonal da precipitação pluvial ao longo de um ciclo de cultivo é imperativo para a obtenção de rendimentos satisfatórios na agricultura. Portanto, este trabalho teve por objetivo estimar a precipitação diária para diferentes níveis de probabilidade no município de São Gabriel da Palha-ES. Para calcular a precipitação diária para os níveis de probabilidade de 90, 80, 75, 70, 60, 50, 40, 30, 20, 10, 5, 2, 1 e 0,5% utilizou-se a distribuição de Weibull. Os parâmetros de forma e escala da distribuição foram estimados por meio do método dos momentos. A aderência dos dados diários de precipitação a distribuição de Weibull foi verificada com o teste de Kolmogorov-Smirnov ao nível de 5% e 1% de significância. Os dados diários de precipitação se ajustaram a distribuição de Weibull e por meio dos valores estimados pode-se concluir que os maiores valores de precipitação diária ocorrem entre os meses de outubro e abril e os menores entre os meses de maio e setembro.

Palavras-chave: Dados pluviométricos, disponibilidade hídrica. **Área do Conhecimento:** Ciências Agrárias.

Introdução

Segundo Bega (2003), a precipitação pluvial é o elemento climático que mais apresenta desenvolvimento limitações ao agricultura sustentável, seja do ponto de vista ambiental ou econômico. Uma vez que a ocorrência de chuvas frequentes ou muito intensas pode provocar erosão do solo, inviabilizar safras, atrasar colheitas e até mesmo ocasionar problemas de ordem fitossanitários nas culturas, acarretando na redução da produtividade agrícola e aumento do custo de produção. Da mesma forma, situações opostas, como veranicos ou mesmo períodos secos prolongados podem inviabilizar a produção.

Nessa perspectiva, o conhecimento da variabilidade sazonal da precipitação pluvial ao longo de um ciclo de cultivo é imperativo para a obtenção de rendimentos satisfatórios na agricultura, pois é por meio destas informações que se pode planejar a melhor época de plantio, dimensionar e manejar projetos de irrigação, entre outras atividades inerentes a agricultura (TUCCI, 2004).

De acordo com Silva et al. (2010) é válido ressaltar que não só a agricultura é beneficiada com tais informações, mas todo o setor produtivo que direta ou indiretamente é influenciado pela ocorrência ou não das chuvas, tais como turismo, construção civil, transporte, entre outros. Assim, o conhecimento prévio da variação destes elementos meteorológicos ao longo do ano, possibilita um planejamento mais seguro das mais diversas atividades, reduzindo riscos minimizando as perdas inerentes a tais eventos, consequentemente reduzindo os custos operacionais.

Portanto, este trabalho teve por objetivo estimar a precipitação diária para diferentes níveis de probabilidade no município de São Gabriel da Palha-ES.

Metodologia

Foi utilizada para elaboração deste trabalho a série histórica de precipitação diária de 35 anos disponibilizada no sistema de informações hidrológicas da Agência Nacional de Águas (ANA).

O pluviômetro está situado na localidade Barra de São Gabriel, pertencente ao município de São Gabriel da Palha-ES a uma altitude de 77 m, com coordenadas geográficas de 19º 03' 26" de latitude Sul e 40º 31' 00" de longitude Oeste, situado na Região Serrana do Estado do Espírito Santo.

De acordo com o Instituto Brasileiro de Geografia e Estatística - IBGE (2011), o município de São Gabriel da Palha-ES possui área territorial de 432,815 km² e população de 31.859 habitantes. A região onde está situado o pluviômetro é caracterizada como terras quentes, acidentadas e secas com temperatura média mínima no mês mais frio variando entre 11,8 ℃ e 18 ℃ e com temperatura média máxima no mês mais quente oscilando entre 30,7 ℃ e 34 ℃ (EMCAPA/NEPUT, 1999).

Para estimar a precipitação diária do mês em estudo para os níveis de probabilidade de 90, 80, 75, 70, 60, 50, 40, 30, 20, 10, 5, 2, 1 e 0,5% utilizou-se a distribuição de Weibull cuja função densidade de probabilidade é dada pela equação:

$$f(x) = \frac{\beta}{\delta} \left(\frac{x}{\delta} \right)^{\beta - 1} \exp \left[-\left(\frac{x}{\delta} \right)^{\beta} \right]$$

para $x > 0$; $\beta > 0$; $\delta > 0$

Onde:

 β e δ são os parâmetros de forma e escala, respectivamente.

A estimativa dos parâmetros β e δ podem ser obtidos a partir de amostras da população. Os métodos da máxima verossimilhança e os dos momentos são os mais utilizados para fazer a estimativa desses parâmetros. Optou-se neste trabalho pelo método dos momentos para estimar os parâmetros da distribuição de Weibull.

Geralmente são utilizados testes de hipóteses para verificar a aderência de uma determinada distribuição de probabilidade a série de dados. Um desses testes é o de Kolmogorov-Smirnov. O teste de aderência de Kolmogorov-Smirnov (KS) é um teste não paramétrico, cuja estatística de teste tem como base a diferença máxima entre as funções de probabilidades acumuladas, empírica e teórica, de variáveis aleatórias contínuas. De acordo com Naghettini e Pinto (2007) o teste não é aplicável a variáveis aleatórias discretas. Sendo assim, para verificar o ajuste da distribuição a série de dados foi utilizado o teste Kolmogorov-Smirnov ao nível de 5% e 1% de significância.

Os dados foram submetidos à análise estatística com o auxílio do software R 2.10.

Resultados

Os valores da precipitação diária e dos parâmetros de forma (β), escala (δ) e o valor-P para os níveis de probabilidade de 99% a 0,5% para as condições climáticas da área de estudo são apresentados na Tabela 1.

Tabela 1 - Precipitação diária para diferentes níveis de probabilidade e parâmetros de forma (β), escala (δ) e Valor-P para as condições climáticas da área de estudo

	Probabilidade (%)																Volor
Mês	90	80	75	70	60	50	40	30	20	10	5	2	1	0,5	β	δ	Valor p
	Precipitação diária (mm)																
Jan	0,9	2,3	3,2	4,1	6,3	9,2	12,8	17,8	25,3	39,0	53,5	73,8	89,8	106,3	0,83	14,26	0,808
Fev	0,6	1,4	1,9	2,5	3,9	5,7	8,1	11,4	16,2	25,3	35,0	48,6	59,5	70,7	0,81	9,03	0,297
Mar	0,7	1,8	2,4	3,2	4,9	7,2	10,3	14,5	20,8	32,5	45,2	63,1	77,3	92,1	0,80	11,46	0,244
Abr	0,5	1,2	1,7	2,2	3,4	5,0	7,1	9,9	14,1	22,0	30,5	42,3	51,8	61,6	0,81	7,86	0,065
Mai	0,4	1,0	1,3	1,7	2,6	3,7	5,0	6,9	9,7	14,7	20,0	27,3	33,0	38,9	0,86	5,59	0,194
Jun	0,3	0,8	1,1	1,4	2,1	2,9	4,1	5,6	7,8	11,8	16,1	21,9	26,5	31,2	0,86	4,49	0,530
Jul	0,3	0,8	1,0	1,3	2,1	3,0	4,1	5,7	8,1	12,3	16,9	23,2	28,2	33,3	0,84	4,57	0,583
Ago	0,4	0,9	1,1	1,5	2,2	3,1	4,2	5,7	8,0	11,9	16,0	21,6	25,9	30,3	0,89	4,66	0,666
Set	0,3	0,8	1,2	1,5	2,3	3,4	4,8	6,8	9,7	15,1	20,8	29,0	35,4	42,1	0,81	5,38	0,101
Out	0,6	1,5	2,0	2,6	4,1	5,9	8,3	11,5	16,4	25,4	35,0	48,5	59,2	70,2	0,82	9,19	0,568
Nov	0,9	2,2	3,0	3,9	6,0	8,6	12,0	16,6	23,5	35,9	49,1	67,5	82,0	96,9	0,84	13,31	0,141
Dez	1,0	2,4	3,2	4,1	6,4	9,2	12,9	18,0	25,5	39,2	53,9	74,3	90,4	107,1	0,83	14,36	0,852

O comportamento da precipitação diária do município de São Gabriel da Palha-ES para os níveis de probabilidade de 90 a 0,5% são apresentados nas Figuras 1 e 2.

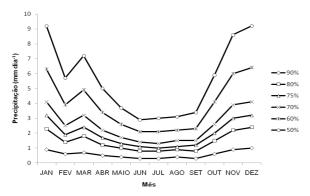


Figura 1 - Comportamento da precipitação diária do município de São Gabriel da Palha-ES para os níveis de probabilidade de 90, 80, 75, 70, 60 e 50%.

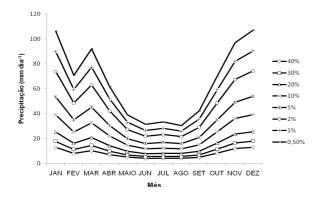


Figura 2 - Comportamento da precipitação diária do município de São Gabriel da Palha-ES para os níveis de probabilidade de 40, 30, 20, 10, 5, 2, 1 e 0,5%.

Discussão

Na Tabela 1 observa-se que os valores de p foram superiores a 0,05, isto indica o ajustamento dos dados às distribuições.

Além disso, verifica-se que as maiores precipitações diárias no município de São Gabriel da Palha-ES ocorrem entre os meses de outubro e abril, ultrapassando aos 67 mm nos meses de novembro e dezembro para níveis de probabilidade de 0,5%.

O mês de janeiro assim como novembro e dezembro também pode apresentar valores

elevados de chuva diária quando comparado aos demais meses do ano.

O período de menor precipitação vai de abril a setembro. A precipitação diária para o nível de 75% de probabilidade varia de 1,4 a 2,4 mm nos meses de maior precipitação e de 0,3 a 1,2 mm nos meses de menor precipitação.

Em se tratando de probabilidade, os valores de precipitação diária podem ser maiores ou iguais aos apresentados na Tabela 1. Por exemplo: a precipitação de um dia do mês de janeiro pode ser, com 0,5% de probabilidade, maior ou igual a 106,3 mm.

Nas Figuras 1 e 2 é possível verificar que os valores de precipitação diária no período de maio a setembro apresentam menor variação quando comparado com os valores do período compreendido entre outubro e abril.

Conclusão

Entre os meses de outubro e abril ocorrem às maiores precipitações diárias e entre os meses de maio e setembro as menores. Os meses em que podem ocorrer as maiores precipitações diárias do ano são janeiro, novembro e dezembro. Entre os meses de maio e setembro há pouca variação nos valores diários de chuva.

Agradecimentos

Os autores agradecem a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão de bolsas de mestrado ao primeiro autor e de doutorado ao segundo autor, ao Programa de Pós-Graduação em Produção Vegetal do Centro de Ciências Agrárias da Universidade Federal do Espírito Santo pelo apoio técnico e científico e a Agência Nacional de Águas (ANA) pela disponibilização dos dados.

Referências

- BEGA, R. M. Variabilidade espacial e temporal das precipitações pluviais e das perdas de água e solo em Pindorama, SP. 2003. 97f. Dissertação (Mestrado em Agricultura Tropical e Subtropical) Instituto Agronômica de Campinas, 2003.
- EMCAPA/NEPUT. **Mapa das Unidades Naturais do Estado do Espírito Santo**. Vitória, 1999. 1 mapa: 87x114 cm. Escala:1:400.000.
- IBGE. Estados@. **Espírito Santo**. Disponível em:khttp://www.ibge.gov.br/estadosat/perfil.php?sigla=es >. Acesso em: 28 de Julho de 2011.

- NAGUETTINI, M.; PINTO, E. J. A. **Hidrologia Estatística**. Belo Horizonte: CPRM, 2007. 561 p.
- R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL: http://www.R-project.org.
- SILVA, J. G. F.; ULIANA, E. M.; PIMASSONI, L. H. S.; RAMOS, H. E. A. Probabilidade de Ocorrência de Dias Chuvosos e Precipitação Mensal e Anual para o Município de Colatina ES. In: XVI Congresso Brasileiro de Meteorologia, 2010, Belém PA. A Amazônia e o Clima Global, 2010.
- TUCCI, C.E.M. **Hidrologia**: Ciência e Aplicação, 3. Ed., Porto Alegre, RG: Ed. Universidade Federal do Rio Grande do Sul (UFRG/ABRH), 2004. 944p.