AVALIAÇÃO DA APLICAÇÃO DO LASER DE CO₂NA DEGRANULAÇÃO PROTÉICA DE LEVEDURA.

Ana P. Lemes¹, Bruna de C. Cardenuto², Caio S. M. Perri³,
Mariana I. B. P. Martins⁴, Daniela A. Mardegan ⁵, Milene da S. Melo⁶, Rafael Melges⁷,
Renata Bitar⁸, Rozane Z. Busanello⁹, Janaína Duarte¹⁰,
Renato A. Zângaro ¹¹, Marcos T. Pacheco¹²

Bloco 9 – FCS, Universidade do Vale do Paraíba – Av. Shishima Hifumi, 2911 – Urbanova 12244 – 000 - São José dos Campos – SP – Brasil – Fone +55 12 3947 1000 e-mail: apaulalemes@ig.com.br
 Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba Av. Shishima Hifumi, 2911 – Urbanova – 12244 – 000 São José dos Campos - SP – Brasil Fone +55 12 3947 1125 e-mail: mtadeu@univap.br

Palavra - chave: Laser de CO₂, Degranulação Protéica, Levedura

Área de Conhecimento: III- Engenharias

RESUMO - A preocupação com a beleza da pele existe há muitos anos. Sendo o principal fator no envelhecimento a exposição crônica ao sol. A pele constitui de duas camadas principais: epiderme e derme, onde comporta fibras de colágeno. Para o rejuvenescimento, utilizam-se vários recursos, como esfoliações químicas. Nos tempos atuais, resultados com os Laseres são fantásticos. Entre eles, destaca-se o Laser CO₂, por ser fortemente absorvido pela água, componente principal dos tecidos. Seu primeiro efeito ablativo, remove a camada superficial da epiderme, o segundo efeito, a hiperemia, causa denaturação protéica nas células das fibras de colágeno, contraindo as fibras. Observando que o efeito do Laser CO₂ na pele baseia – se principalmente na denaturação protéica, avaliou-se a aplicação do Laser na degranulação protéica nas células de levedura de pão. As células da levedura, ao serem submetidas a radiações com Laser CO₂ tem sua membrana lipoprotéica rompida, através da degranulação protéica. Para a visualização da degranulação protéica, utilizou-se o corante Vermelho Congo, com o rompimento da membrana o corante penetra na célula. Após irradiações com Laser, os resultados mostraram que a mínima potência necessária para a degranulação protéica foi de 0,26 W e a partir de 0,70 W houve carbonização das células.

1 - INTRODUCÃO

A preocupação com a beleza já existe há muitos anos, quando se utilizavam vários recursos como esfoliações e outras substâncias de propriedade cosméticas. (BORELLII.2003).

A pele é considerada o maior órgão do corpo, correspondendo de 1 a 4mm de profundidade, com uma área de 1,8m² Ela se constitui de duas camadas principais: a epiderme, composta de épitelio escamoso estratificado, queratinizado de origem ectodérmica, e a derme, que é um tecido de sustentação, constituído de tecido conjuntivo, que comporta o colágeno, fibras elásticas e material amorfo. O principal fator no envelhecimento é a exposição crônica ao sol. O envelhecimento cutâneo é caracterizado pelo envelhecimento intrínseco, decorrente do desgaste natural do organismo, e envelhecimento extrínseco, fotoenvelhecimento, aquele decorrente do efeito da radiação ultravioleta do sol sobre a pele durante toda a vida. (LIMA, 2003).

Nos tempos atuais, com o progresso da medicina e do conhecimento humano, é possível obter resultados fantásticos no rejuvenescimento com o uso dos laseres. Entre os laseres utilizados no "resurfacing" ou peeling a laser, destaca-se o Laser de CO₂, por ser fortemente absorvido pela água, que é o componente principal dos tecidos, conforme figura 1. (BADIN, 2003). Todos os Laseres de CO₂ operam na parte mediana porção invisível do espectro eletromagnético, em 10.600 nm. O Laser de CO₂ é do tipo molecular, apesar de ser chamado Laser de dióxido de carbono, o meio é misturado com o nitrogênio e com o hélio para aumentar sua condutividade térmica. Assim, para que o gás emita luz, suas moléculas tem que ser quebradas, e por isso, esse gás tem que ser renovado constantemente no interior do tubo. Em outras palavras, precisa-se de um fluxo contínuo de gás, pois as moléculas usadas não podem ser reaproveitadas. (BADIN, 1998)

Comparando à maioria dos Laseres clínicos, o comprimento de onda do CO_2 tem uma curta profundidade de penetração (0,02mm), conforme figura 2 (BADIN, 1998).

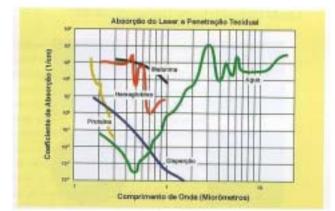


Figura 1 – Absorção do Laser e Penetração tecidual.

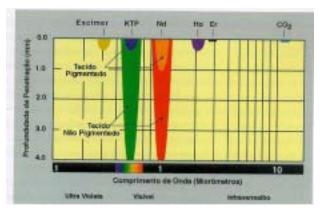


Figura 2 – Profundidade de penetração dos diferentes comprimentos de onda.

Na aplicação do Laser de CO_2 na pele, o primeiro efeito é ablativo, removendo a camada mais superficial da epiderme (camada queratinizada), o segundo efeito, a hiperemia, onde o Laser está com temperatura por volta de 40° , causa denaturação protéica nas células das fibras de colágeno, contraindo as fibras, dando assim um aspecto rejuvenescido à pele.

Observando que o efeito do Laser CO_2 na pele, baseia – se principalmente na denaturação protéica nas células, avaliou-se a aplicação do Laser de CO_2 na degranulação protéica da membrana celular na levedura de pão

A levedura de pão é um fungo, e distribui-se em colônias de organismos procariontes unicelulares. Por conter células unicelulares, optou-se nesse experimento pela utilização de levedura de pão, facilitando assim a visualização da degranulação protéica ao microscópio.

As células da levedura apresentam todas as estruturas básicas de uma célula (membrana, citoplasma e núcleo). A membrana celular é constituída por duas camadas lipídicas fluidas e contínuas, onde estão inseridas moléculas protéicas (JUNQUEIRA; CARNEIRO, 2000).

Como as células da levedura são delicadas, ao serem irradiadas com Laser de CO₂, tem sua membrana

lipoprotéica rompida devido ao fenômeno da degranulação, que corresponde ao "estouro" destes pela lise da membrana celular. Com a degranulação protéica, o corante Vermelho Congo penetra na célula, tornando visível ao microscópio óptico o rompimento da membrana, podendo assim,

avaliar as diferentes potências necessárias, para a degranulação protéica nas células da levedura.

2 - METODOLOGIA

O experimento foi realizado no Laboratório de Fabricação de Cateteres, no Instituto de Pesquisa e Desenvolvimento (IP&D), na Universidade do Vale do Paraíba (UNIVAP).

Inicialmente realizamos a preparação da pasta de levedura, na proporção de 2g/ml de levedura de pão em soro fisiológico a 0,9%. Foram preparadas 8 amostras, com espessura média de 330 µm e peso médio de 40mg, da pasta de levedura, sendo aplicadas com o uso do método do esfregaço. A manipulação das amostras foram feitas de forma asséptica, sem conta manual. Após fixar-se a amostra, (conforme mostra, figura 3), irradiou-se diretamente a uma distância de 22,5cm com o Laser (Synrad Dio lase, Carbon doxide Laser), em aplicações com um único pulso, variando-se as larguras de pulso, conforme Tabela 1. O diâmetro do feixe do Laser utilizado foi 2mm.

Posteriormente a aplicação do laser foi colocado 10 µl de corante Vermelho Congo, acrescentando-se a lamínula sobre a gota do corante e a amostra Figura 3 – Fixação da amostra.

Tabela 1 – Parâmetros definidos para irradiação e respectivos resultados.

 		
Largura de pulso (ms)	Potência (W)	Resultado
4	0,24	Não houve variação
5	0,26	Rompimento parcial da membrana de algumas células.
7,5	0,38	Rompimento total da membrana de todas as células.
10	0,45	Rompimento total da membrana de todas as células.
15	0,70	Carbonização das células.
		Carbonização das

irradiada. Realizou-se a visualização das amostras no microscópio óptico comum (Leica), com aumento de 400x.

3-RESULTADOS E DISCUSSÕES

Na observação das amostras, percebe-se que na largura de pulso de 4ms e potência de 0,24 W, não ocorreu mudança estrutural da membrana, observando que o corante não penetrou nas células, conforme a figura 4. A partir da largura de pulso de 5ms e potência de 0,26 W, observou um início da degranulação protéica em algumas células, como pode ser observado na figura 5. Com o aumento das larguras de pulso para 7,5ms e 10ms, com potências de 0,38 W e 0,45 W, ocorreu a degranulação protéica em todas as células como pode ser visto na seta indicativa da figura 6. Aumentando novamente a largura de pulso para 15ms e 20ms com potências de 0,70 W e 0,91 W, houve carbonização das células, conforme observado na figura 7.

Figura 4 – Não houve mudança na membrana.

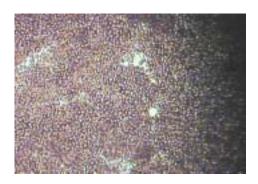


Figura 5 – Início da degranulação protéica em algumas células.

Figura 6 – Degranulação protéica em todas as células (área rosada).

Figura 7 – Carbonização das células (área escura).

4 - CONCLUSÕES

De acordo com os resultados observado, pode – se concluir que a uma mínima potência necessária para a degranulação protéica na levedura de pão foi de 0,24W.

5 – REFERÊNCIAS BIBLIOGRAFICA

Anatomia da pele, Disponível em: < www.acne.com.br/pele > acesso em: 12 mai. 2003.

BADIN, A. Z. D; MORAES, L. M.; ROBERTS, T. L. **Rejuvenescimento Facial a Laser,** Rio de Janeiro: Revinter, 1998.

BORELLI, S.

Estudo Comparativo : Laser de CO₂ Ultrapulsado e Érbio-Yag no Envelhecimento Cutâneo.

Disponível em:

< www.dermat.com.br/co2%20eryag.htm> acesso em: 12 mai. 2003.

LIMA, R. B.

"Resurfacing" com Laser, Disponível em:

< www.dermatologistas.net > acesso em: 01 abr. 2003.

MACEDO, O. R.

Laser Ultra Pulse, Disponível em: < www.derme.com.br/tratamentos > acesso em: 12 mai. 2003.

JUNQUEIRA, L. C; CARNEIRO, J. **Biologia Celular e Molecular**, Rio de Janeiro: Guanabara Koogan S.A., 7° ed. 2000.

