

ECONOMIA DE CONCRETO - VIGAS OCAS

Carlos Alberto Vilela de Magalhes¹, Cristian Mendes de Lima², MSc. Guido Santos de Almeida Junior ³, MSc. Renato Henrique Ferreira Branco⁴

¹UNIVAP/FEAU, Av. Shishima Hifumi nº 2911-Urbanova-São José dos Campos-SP, carlos.vilela@embraer.com.br

²UNIVAP/FEAU, Av. Shishima Hifumi nº 2911-Urbanova-São José dos Campos-SP, cristian.mendes@embraer.com.br

³UNIVAP/FEAU, Av. Shishima Hifumi nº 2911-Urbanova-São José dos Campos-SP, guido@univap.br

⁴Embraer/DPG, Av. Brigadeiro Faria Lima nº 2170 Putim-São José dos Campos-SP, renato.branco@embraer.com.br

Resumo - Este trabalho tem por finalidade avaliar a viabilidade da confecção de vigas estruturais ocas, abrangendo aspectos técnicos, executivos e financeiros, visando a redução da quantidade de concreto utilizado em uma obra. Primeiramente ocorreram os cálculos preliminares e posterior confecção de modelos eletrônicos, no software Catia V5.0, contendo vigas ocas e vigas maciças. Com a utilização do software de cálculo estrutural SAP2000, foram realizadas simulações para análise das vigas quando submetidas a esforços de flexão e cisalhamento. Foram confeccionados seis corpos de prova, sendo três de vigas ocas moldadas em concreto armado, com retângulos de isopor posicionados abaixo da linha neutra das vigas, proporcionando o efeito oco nas mesmas e, posteriormente foram confeccionadas três vigas maciças convencionais. Com os dados obtidos através das análises em modelo eletrônico e dos ensaios práticos executados, foram feitas as comparações com os atuais processos de construção civil que utilizam elementos estruturais maciços.

Palavras-chave: Concreto, modelo, corpo-de-prova, análise e vigas.

Área do Conhecimento: Engenharia Civil

Introdução

A função deste estudo é avaliar a viabilidade da confecção de vigas de concreto armado ocas, abrangendo aspectos técnicos, executivos, financeiros e ambientais, visando a redução da quantidade de concreto utilizado em uma edificação, por meio da comparação entre vigas ocas e vigas maciças, utilizadas nos atuais processos de construção civil, tendo como base de dados para comparação, análises de dados provenientes de modelos eletrônicos, e de dados práticos coletados de ensaios.

Vigas são barras horizontais que delimitam as lajes, suportam paredes e recebem ações das lajes ou de outras vigas e as transmitem para os apoios (BOTELHO; MARCHETTI, 2007), portanto são elementos lineares em que os esforços predominantes são: momento fletor e força cortante (ABNT - NBR6118:2007).

No Brasil, não há números precisos que apontam uma estimativa nacional de geração de resíduos na área de construção civil (PINTO,1999), estima-se que cerca de 25% de todo concreto utilizado nas obras é perdido, seja com desperdícios ou com o excesso de material

utilizado na parte estrutural, por receio de futuros problemas técnicos, sendo este último ítem, o principal foco deste trabalho. A economia de concreto, além de trazer ganhos financeiros significativos, ainda propicia um ganho ambiental, com a redução da necessidade de extração de matéria-prima da natureza.

Metodologia

O procedimento experimental deste trabalho foi constituído por meio das etapas de definição dos materiais, suas características e resistências, cálculo das dimensões das vigas ocas e maciças, modelamento eletrônico destas vigas, simulações com aplicações de cargas em modelo eletrônico, análises do comportamento e resistência das vigas quando submetidas a esforços de flexão e cisalhamento, moldagem dos corpos de prova, ensaios práticos, e análise dos resultados obtidos.

A resistência da viga oca não depende da quantidade de armadura transversal utilizada. Este fenômeno justifica-se pelo fato da zona central da viga ser dotada de seção oca, neste caso, esta armadura não tem qualquer efeito de confinamento do concreto . Por outro lado, o

aumento do diâmetro das armaduras longitudinais aumenta a rigidez da viga e permite a mesma alcançar uma carga de plastificação mais elevada (VENTURA; BARROS; AZEVEDO, 2003).

As figuras 1 e 2 mostram as dimensões e imagem das armações e do isopor utilizados por VENTURA, BARROS e AZEVEDO, em seus estudos e testes realizados com vigas ocas, desenvolvidos no Instituto Politécnico de Viseu, em Portugal.

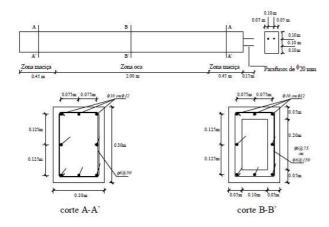


Figura 1- Representação esquemática da Viga Oca utilizados por VENTURA, BARROS e AZEVEDO.

Figura 2- Foto da armação metálica e da estrutura oca de isopor utilizados por VENTURA, BARROS e AZEVEDO.

Materiais

O Concreto armado é a associação do concreto simples com uma armadura, usualmente constituída por barras de aço. Os dois materiais devem resistir solidariamente aos esforços solicitantes. Essa solidariedade é garantida pela aderência entre os dois materiais.

A baixa resistência à tração do concreto pode ser contornada com o uso de armadura adequada, em geral constituída de barras de aço, obtendo-se o concreto armado.

Além da resistência à tração, o aço garante ductilidade e aumenta a resistência à compressão, em relação ao concreto simples. (USP-Escola Politécnica Departamento de Engenharia de Estruturas e Fundações, 2001).

é metálica Aço uma liga composta principalmente de ferro е de pequenas quantidades de carbono, em torno de 0,02% até 2,11%. Os aços estruturais para construção civil possuem teores de carbono da ordem de 0,18% a 0,25%. Entre outras propriedades, apresenta resistência е ductilidade, muito importantes para a Engenharia Civil.

Como o concreto simples apresenta pequena resistência à tração e é frágil, é altamente conveniente a associação do aço ao concreto, obtendo-se o concreto armado.

O aço adequadamente dimensionado e detalhado, resiste muito bem à maioria dos tipos de solicitação. Mesmo em peças comprimidas, além de fornecer ductilidade, aumenta a resistência à compressão. (USP-Escola Politécnica Departamento de Engenharia de Estruturas e Fundações, 2001).

O isopor é uma espuma formada a partir de derivados de petróleo, é o poliestireno expandido, que é insumo da construção civil. Nesse setor, é mais conhecido como EPS. Porém, não difere muito daquele que pegamos em embalagens, trabalhos escolares e maquetes. A única diferença é que o EPS usado na construção civil é mais compacto, além de ser um material prático, resistente e de suportar temperaturas até a 85°C. (Disponível em http://www.dema.ufscar.br. Acesso em 20/02/2010.

Cálculos

Após a definição dos materias utilizados neste trabalho, executou-se todo o procedimento de cálculo necessário para determinar as dimensões de execução dos corpos de prova, além da obtenção dos valores esperados após a realização dos ensaios práticos, conforme mostrado nas tabela 1, 2 e 3.

Tabela 1 - Dimensões básicas da viga

Dimensões Básicas da Viga			
Ítem	Dimensão	Unidade	
d (altura útil da viga)	12,5	cm	
h (altura da viga)	15	cm	
b (largura da viga)	15	cm	
c (cobrimento)	2,5	cm	
Bx (x/d)	0,600	-	
x (altura da linha neutra)	7,5	cm	
Área de Concreto	48	cm²	
Área do Isopor	30	cm ²	

Tabela 2 - Valores de cálculo da armadura longitudinal.

Armadura Longitudinal	Dimensão	Unidade
Momento característico (Mk)	9,3	KN.m
Momento de cálculo (Md)	13	KN.m
Fck do Concreto	25	Мра
Fcd do Concreto	17,86	Мра
Fyk do aço (CA50)	500	Мра
Fyd do aço (CA50)	434,78	Мра
Kc (Coeficiente de concreto)	1,8	
Ks (Coeficiente de aço)	0,03	
As (Área de aço)	3,12	cm ²
As mínima	0,28	cm ²
Diâmetro do Vergahão	3/8	polegada
Quantidade vergahão	4	Barras

Tabela 3 - Valores de cálculo da armadura vertical.

Armadura Vertical	Dimensão	Unidade
Vsk (Cortante característica)	3,25	KN
Vsd (Cortante de cálculo)	4,6	KN
Vrd2 (Bielas comprimidas)	81,6	KN
Fctd (Res. tração concreto)	0,13	KN/cm ²
Vc (Cortante de concreto)	14,7	KN
Vsw (Cortante estribo)	10,1	KN
Asw/S (Aço estribo)	2,06	cm²/m
(Asw/S) min (Aço estribo)	1,25	cm²/m
Vr (Resistido pela viga)	15,62	KN
Diâmetro do Estribo	5	mm
Quantidade estribos	7	-
Distância entre estribos (S)	7,5	cm
Brita	Tipo 1	-
Granulometria da areia	Média	-

Simulações Eletrônicas

Dando continuidade na obtenção de dados do trabalho proposto, primeiramente ocorreu a confecção de quatro modelos eletrônicos, realizados no software Catia V5.0.

O primeiro modelo é o de uma viga retangular oca, com 150 mm de altura, 150 mm de largura e 500 mm de comprimento, com um vazio em sua estrutura interna ,abaixo da linha neutra, com dimensão de 60 mm de largura e 50 mm de altura, conforme mostrado na figuras 3 e 4.

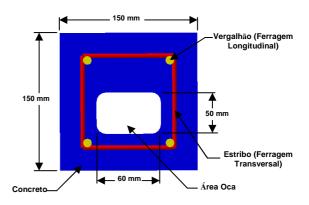


Figura 3- Viga Oca em representação lateral

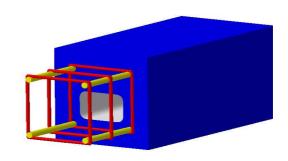


Figura 4- Viga Oca em representação isométrica e com corte parcial para visualização de sua estrutura interna.

O segundo modelo é o de uma viga retangular , com 150 mm de altura, 150 mm de largura e 500 mm de comprimento, totalmente maciço,conforme mostrado nas figuras 5 e 6.

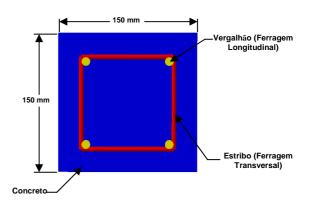


Figura 5- Viga Maciça em representação lateral

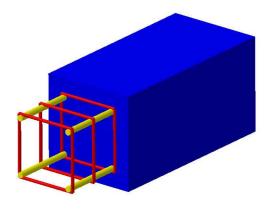


Figura 6- Viga Maciça em representação isométrica e com corte parcial para visualização de sua estrutura interna.

Posteriormente, com a utilização do software de cálculo estrutural SAP 2000, foram realizadas simulações para análise do comportamento estrutural das vigas ocas e maçiças quando submetidos a esforços de flexão e cisalhamento. Os esforços de tração na flexão e de cisalhamneto, foram simulados com base na teoria dos terços, esta metodologia utiliza um corpo-de-prova de seção prismática que é submetido à flexão, com carregamentos em duas seções simétricas, até à ruptura , conforme mostrado na figura 7, este nome se dá pelo fato das seções carregadas se encontrarem nos terços do vão.(Universidade de São Paulo - USP -Escola Politécnica Departamento de Engenharia de Estruturas e Fundações. Referência para Cálculo de Concreto Armado São Paulo - 2001).

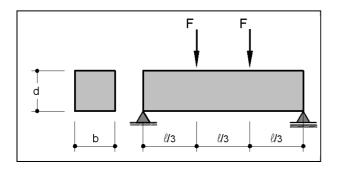


Figura 7 - Representação esquemática da aplicação de carregamento pelo método dos tercos.

As figuras 8 e 9, mostram diferentes fases de modelamento e simulação da aplicação de cargas nas vigas, utilizando a teoria dos terços.

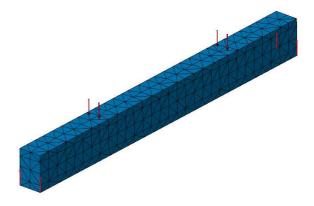


Figura 8- Simulação de carregamento de carga de flexão e suas reações, ambas indicadas pelas setas vermelhas.

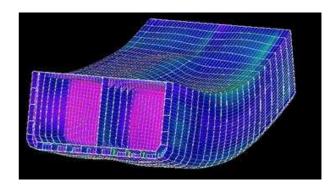


Figura 9- Representação ilustrativa da deformação sofrida por uma viga após a aplicação da carga de flexão.

Confecção dos corpos-de-prova

Após a confecção dos modelos eletrônicos foram modelados seis corpos-de-prova (três ocos e três maciços), com as mesmas dimensões representadas nos modelos eletrônicos.

Para confecção do corpo de prova foram utilizados concreto com traço 1:2:3 (1 medida de cimento CPII, duas medidas de areia com granulometria média, 3 medidas de brita nº 1), vergalhões de aço de bitola 3/8" (ferragem longitudinal) e de bitola 5mm (estribos), arame recozido diâmetro 1,0 mm, EPS (isopor), madeira compensada, madeira de eucalipto, prego e posicionadores plásticos.

A confecção do corpo de prova foi iniciado com a montagem em uma bancada, da estrutura armada das vigas ocas e das vigas maciças, fazendo a amarração dos vergalhões com os estribos utilizando arame recozido, conforme mostrado na figura 10.

Figura 10- Confecção da armação de uma viga de concreto armado.

Posteriormente foram confeccionadas as caixas de madeira que deram o formato externo para as vigas, sendo que as caixas para moldagem das vigas foram posicionas horizontalmente no solo.

Após a montagem das caixas das vigas ocas, estas receberam as armações metálicas apoiadas em espaçadores plásticos, e posteriomante outros espaçadores foram posicionados no fundo da caixa para receber os retângulos de isopor, que tiveram como função, proporcionar o efeito oco nas vigas. Os retangulos de isopor foram posicionados abaixo da linha de centro longitudinal da viga.

Depois de confeccionada a mistura do concreto, o mesmo foi inserido dentro das caixas das vigas ocas e das vigas maciças, conforme mostrado na figura 11.

Figura 11- Moldagem de uma viga de concreto armado.

Ensaios

A NBR6118:2007 exige que os corpos de prova de concreto, só podem ser submetidos a ensaios de resistência mecânica, vinte oito dias apos a sua confecção, sendo assim, como este trabalho é parte de uma pesquisa em andamento, os resultados dos ensaios serão apresentados no XIV INIC, que acontecerá no mês outubro de 2010.

As figuras 12 e 13, mostram os ensaios de tração na flexão, conforme NBR NM 55:1996 - (Concreto - Determinação da resistência à tração na flexão de corpos-de-prova prismáticos) e de compressão axial, conforme NBR 5739/2007-(Ensaio de compressão de corpos-de-prova cilíndricos).

Figura 12- Ensaio de compressão axial.

Figura 13- Ensaio de tração na flexão.

Resultados

Os cálculos e dimensionamentos preliminares, não mostraram diferença, entre resistência das vigas ocas e das vigas maciças.

Quanto a econômia de concreto, as vigas ocas proporcionam um ganho no valor de aproximadamente 20 % (vinte por cento), porém, os resulatos concretos só serão obtidos após a realização dos testes práticos.

Discussão

Pode-se verificar que tanto no trabalho em questão, quanto no trabalho desenvolvido por VENTURA, BARROS e AZEVEDO, as resistências à flexão e cisalhamento, não foram diferentes das resistências encontradas em vigas maciças.

A principal e atual diferença, é que o trabalho em questão está baseado em cálculos e estudos preliminares desenvolvidos em softwares e o trabalho desenvolvido por VENTURA, BARROS e AZEVEDO apresenta dados provenientes de ensaios práticos.

Quanto à economia de concreto, que é o principal objeto deste trabalho, a tabela 4 mostra

que os valores de concreto economizados, em relação a uma viga maciça, também foram similares nos dois trabalhos, conforme mostrado na tabela 4.

Tabela 4 - Valores comparativos de volume e economia de concreto.

Vigas Ocas				
Ítem	Trabalho INIC 2010	Trabalho Ventura		
Volume Total da				
Viga (cm³)	11250	174000		
Volume da região				
Oca (cm³)	2205	40000		
Economia de				
concreto com a	20	23		
região Oca (%)				

Como este trabalho é parte de uma pesquisa em andamento, as demais discussões serão apresentados no XIV INIC, que acontecerá na terceira semana de outubro de 2010.

Conclusão

Utilizando o procedimento de cálculo de vigas retangulares, não foram encontradas diferenças entre as vigas ocas e maciças, como este trabalho é parte de uma pesquisa em andamento retangulares, serão desenvolvidos novos cálculos, utilizando o procedimento para dimensionamento de vigas " T ".

No modelamento eletrônico, ainda estão sendo feitos refinamentos, buscando as diferenças entre as áreas ocas e maciças.

A moldagem dos corpos de prova, apresentou dificuldade no momento do preenchimento das formas de madeira pelo concreto, pois havia grande preocupação com o deslocamento dos espaçadores plásticos e dos retângulos de isopor, o que poderia causar assimetria nas vigas.

A conclusão sobre o real comportamento das vigas, só poderão ser tomados após a realização e coleta de dados dos ensaios.

Agradecimentos

Agradecemos a todo apoio e atenção prestada pelo nosso orientador interno MSc Guido Santos de Almeida Junior, pelo nosso orientador externo MSc Renato Henrique Ferreira Branco e ao Laboratório Falcão Bauer de São José dos Campos.

Referências

Associação Brasileira de Normas Técnicas (ABNT). Projeto de estruturas de concreto - Procedimento. NBR6118:2007. Rio de Janeiro (2007)

Associação Brasileira de Normas Técnicas (ABNT).NBR NM 55:1996-Concreto- Determinação da resistência à tração na flexão de corpos-deprova prismáticos. Rio de Janeiro (1996)

Associação Brasileira de Normas Técnicas (ABNT).NBR 05739 -1994 - Ensaio de Compressão de Corpos de Prova. Rio de Janeiro (1994).

BOTELHO, C.H. MANOEL; MARCHETTI O. Concreto Armado Eu te Amo. v.2.Ed. Blucher.Brasil 2007

Departamento de Engenharia de Materiais-Universidade Federal de São Carlos- UFSCar. Disponível em http://www.dema.ufscar.br>. Acesso em 20 fev. 2010.

PINTO T.P. Metodologia para a gestão diferenciada de resíduos sólidos da construção urbana. São Paulo,189 p. Tese (Doutorado) - Escola Politécnica – Universidade de São Paulo, (1999).

Universidade de São Paulo – USP - Escola Politécnica - Departamento de Engenharia de Estruturas e Fundações - Referência para Cálculo de Concreto Armado - São Paulo – 2001

VENTURA, G.A.; BARROS, J.A.O.; AZEVEDO, A.F.M. Comportamento de vigas de concreto armado de seção oca submetidos a flexão, corte e torção. Viseu-Portugal, 59-68p. Tese (Mestrado) – Instituto Politécnico de Viseu-Escola Superior de Tecnologia-Departamento de Engenharia Civil, (2003).