

EFEITO DO USO DE CORRETIVOS DE ACIDEZ E DE DIFERENTES FONTES DE ADUBAÇÃO NO DESENVOLVIMENTO INICIAL DO CAFEEIRO

Maiquel Borcarte¹, Rodrigo Manzoli¹, Marcelo Antonio Tomaz¹, Guilherme Geraldo Amancio de Souza¹, Felipe Vaz Andrade¹

¹ Centro de Ciências Agrárias da Universidade Federal do Espírito Santo / Departamento de Produção Vegetal, Alto Universitário s/n - Caixa Postal 16 - CEP 29500-000 - Alegre – ES, maiqagro@yahoo.com.br

Resumo - Devido à acidez e baixa fertilidade de grande parte dos solos do Estado do Espírito Santo, a calagem e adubação tornam-se relevantes para o sucesso do cultivo de café. O objetivo deste trabalho foi avaliar os efeitos da aplicação de corretivos de acidez do solo e de diferentes fontes de adubação no desenvolvimento inicial do cafeeiro, em condição de casa de vegetação. O delineamento foi em DIC (Delineamento inteiramente casualizado) com fatorial 3x3x3 (três tipos de correção, três tipos de adubação e três genótipos). Nas condições avaliadas não houve diferenças significativas no desenvolvimento inicial das mudas de cafeeiro com os corretivos estudados. A adubação organomineral apresentou-se mais eficiente proporcionando maior desenvolvimento inicial das plantas de cafeeiro em condição de casa de vegetação.

Palavras-chave: Escória de siderurgia, adubação organomineral, Coffea.

Área do Conhecimento: Ciências Agrárias

Introdução

Devido à importância econômica que a cafeicultura representa, devemos estar atentos ao manejo, principalmente no que diz respeito à calagem e adubação. Devido à acidez de grande parte dos solos do Estado do Espírito Santo, a correção da acidez do solo torna-se relevante para o sucesso dos cultivos. Neste sentido, a correção do solo seja ela utilizando o calcário ou escória siderúrgica, deve ser o primeiro aspecto a ser avaliado quando for interpretada uma análise de solo.

Nas áreas tropicais, sabe-se que, para que os fertilizantes aplicados tenham a máxima eficiência, torna-se necessária a correção da acidez do solo, o que tem sido feito empregando-se os calcários. Entretanto, existem materiais corretivos alternativos, sendo o mais promissor a escória de (PRADO, 2000). siderurgia As apresentam o ânion silicato que corrige a acidez do solo, embora com ação mais lenta comparado ao calcário (PRADO & FERNANDES, 2000b)

Anualmente, a produção da escória de siderurgia supera 3 milhões de toneladas, além do estoque que vem sendo acumulado ao longo do tempo (PRADO et al., 2001). Portanto, alternativamente, pode ser utilizada a escória de siderurgia como material corretivo, pois além de corrigir a acidez do solo, aumenta os teores de cálcio, magnésio e, possivelmente, a disponibilidade de fósforo do solo (PRADO & FERNANDES, 2000a).

Desta forma, este trabalho buscou verificar o efeito de diferentes adubações (mineral, orgânica

e organomineral) com diferentes tipos de correções (escória, calcário, sem correção) sob três genótipos de cafeeiro.

Metodologia

O experimento foi desenvolvido em casa de vegetação no Centro de Ciências Agrárias da Universidade Federal do Espírito Santo (CCA-UFES), em Alegre, ES. Amostras de solo foram retiradas no município de Alegre, Sul do Estado do Espírito Santo. Depois de coletado, o solo foi homogeneizado, seco ao ar e passado em peneira de 2 mm, para caracterização física e química (Tabela 1 e 2).

Tabela 1: Caracterização física do solo utilizado no experimento

Areia ⁽¹⁾	Silte ⁽¹⁾	Argila ⁽¹⁾		
g kg ⁻¹				
483	277	240		
DS ⁽¹⁾	DP ⁽¹⁾	PT ⁽¹⁾		
kg dm ⁻³				
1,25	2,51	0,502		

¹/ obtido pelo método da proveta, onde DS: densidade do solo, DP: densidade de partícula, PT: porosidade total.

Tabela 2: Caracterização química do solo utilizado no experimento

pH ⁽²⁾	P ⁽³⁾	K ⁽³⁾	Na ⁽³⁾		Ca ⁽⁴⁾	Mg ⁽⁴⁾
	mg dm ⁻³			cmolo	c dm ⁻³	
5,0	8,0	29,0	3,0		0,8	0,5
Al ⁽⁴⁾	H+A ⁽⁵⁾	SB ⁽⁶⁾	CTC ⁽⁷⁾	t ⁽⁸⁾	V ⁽⁹⁾	m ⁽¹⁰⁾
cmolc dm ⁻³					%	
0,1	3,1	1,3	4,5	1,4	29,9	3,6

^{2'} relação solo-água 1:2,5; ^{3'} extraído por Mehlich-1; ^{4'} extraído por KCI; ^{5'} extraído por Acetato de Cálcio; ^{6'} soma de bases; ^{7'} CTC a pH 7,0; ^{8'} CTC efetiva; ^{9'} porcentagem de saturação por bases; ^{10'} porcentagem de saturação por alumínio.

O delineamento experimental foi em DIC (delineamento inteiramente casualizado), com distribuição fatorial de 3 x 3 x 3, sendo os fatores: (3) genótipos de cafeeiro; (3) correção com escória de siderurgia, correção com calcário, e ausência de correção do solo; (3) tipos de adubação (mineral, orgânica, organomineral), com quatro repetições totalizando 108 unidades experimentais.

Para os tratamentos com aplicação de silicato e calcário, o solo foi incubado por um período de 3 semanas. A escória de siderurgia utilizada no experimento foi a Escória de Aciaria da Recmix – Agrosilício, cujas características constam na Tabela 3.

Cada unidade experimental foi composta de 10 dm³ de solo, acondicionado em vazos plásticos. A quantidade de escória e calcário utilizado no experimento foi calculada de acordo com a fórmula de saturação por bases para o cálculo de corretivos do Estado do Espírito Santo (PREZOTTI et al., 2007).

Tabela 03: Caracterização da escória de siderurgia

CaO	MgO	PN	ER	PRNT
		%		
36,0	6,0	79,32	72,65	57,63

Após o período de incubação, fez-se a aplicação das seguintes adubações: adubação orgânica utilizando 300 g de esterco bovino por unidade experimental sendo incorporadas 100 gramas no plantio e duas parcelas de 100g em intervalo de 45 dias após o plantio; na adubação organomineral forneceu-se esterco conforme

adubação orgânica, além da adubação mineral que foi realizada de acordo com análise do solo e recomendação para a cultura. Nos tratamentos que receberam adubação mineral, os teores de nitrogênio, fósforo e potássio foram fornecidos de acordo com a análise de solo, conforme a exigência da cultura, segundo o Manual de Recomendação de Calagem e Adubação para o Estado do Espírito Santo (PREZOTTI et al., 2007).

As mudas de café utilizadas no experimento foram da variedade Catuaí IAC 44 (*Coffea arabica*), e os clones 11 e 5 da variedade Conilon Vitória (*Coffea canephora*). O plantio foi realizado após incubação e adubação utilizando uma muda por unidade experimental.

O experimento foi coletado 6 meses após o plantio em vaso, e foram avaliadas as seguintes características: altura da planta (H) em cm, diâmetro no colo da planta (DC) em mm, área foliar (AF) em cm², número de folhas (NF), número de ramos plagiotrópicos (NRP) e volume das raízes (VR) em ml. A área foliar foi calculada obtendo-se o valor médio, em centímetros quadrados por planta, estimado a partir da metodologia proposta BARROS, et al. (1973), confirmada por GOMIDE, et al. (1977) pela fórmula AF = L x C x 0,667, utilizando valores de largura da folha (L) e comprimento da folha (C). Multiplicando este valor pelo número de folhas obteve-se a área foliar total por planta. A medida do diâmetro foi realizada com um paquímetro na altura do colo da planta. A medida da altura foi obtida através de uma régua graduada, e para determinar o volume das raízes foi utilizada uma proveta graduada.

Para cada parâmetro avaliaram-se as interações entre: genótipos e o tipo de adubação, genótipo e o tipo de correção, adubação e o tipo de correção e genótipo e tipo de adubação e de correção. Os resultados avaliados foram submetidos à análise de variância das interações entre os tratamentos e as médias comparadas, pelo Teste de Tukey a 5% de probabilidade, utilizando o programa SAEG.

Resultados

Somente serão apresentadas nos resultados deste trabalho, as interações significativas.

Os parâmetros altura da planta, diâmetro do colo da planta e volume das raízes não apresentaram nenhuma interação significativa. Enquanto a área foliar obteve interação significativa entre genótipo x adubação e genótipo x correção, conforme segue nas Tabelas 4 e 5, respectivamente. As interações adubação x correção e genótipo x adubação x correção e genótipo x adubação x correção não foram significativas.

Na interação entre genótipos e tipos de adubação para a variável área foliar, os melhores resultados foram encontrados nos tratamentos

com adubação organomineral seguido da adubação orgânica e mineral respectivamente. E estudando os genótipos dentro de cada adubação verifica-se que dentro da adubação mineral o Clone 11 foi o mais responsivo. Para adubação orgânica o Clone 11 e a variedade Catuaí 44 apresentaram mais eficientes. Já na adubação organomineral não houve diferença entre os genótipos. (Tabela 4).

Na interação entre genótipos e tipos de correção para a variável área foliar, apesar de alguns dados apresentarem valores superiores, não houve diferença estatística nos tratamentos com corretivo e sem corretivo quando avaliado o genótipo de maneira independente. No entanto houve variação entre as plantas estudadas nos tratamentos com calcário e sem corretivo quando feito a comparação entre os três genótipos dentro de cada adubação. Verificou-se que a variedade Catuaí 44 e o Clone 5 apresentaram resultados superiores ao clone 11 no tratamento com calcário, e no tratamento sem correção somente a variedade Catuaí 44 sobressaiu aos demais genótipos (Tabela 5).

Tabela 4: Interação entre os genótipos e o tipo de adubação para a variável área foliar (cm²)

Tipos de		Genótipos	
adubação	Clone 5	Clone 11	Catuaí 44
Mineral	4695 Bab	4157 Ab	5293 Ba
Orgânica	4869 Bab	4570 Ab	6132 ABa
Organomineral	6685 Aa	4406 Ab	7438 Aa

Médias seguidas pelas mesmas letras maiúsculas na linha e minúsculas na coluna não diferem significativamente entre si, ao nível de 5% de probabilidade pelo teste de Tukey

Tabela 5: Interação entre os genótipos e o tipo de correção para a variável área foliar (cm²)

Tipos de	Genótipos			
correção -	Clone 5	Clone 11	Catuaí 44	
Escória	6097 Aa	4620 Aa	5450 Aa	
Calcário	5375 Aab	4351 Ab	6384 Aa	
Sem correção	4776 Ab	4162 Ab	7028 Aa	

Médias seguidas pelas mesmas letras maiúsculas na coluna e minúsculas na linha não diferem significativamente entre si, ao nível de 5% de probabilidade pelo teste de Tukey.

Para o parâmetro número de folhas, apenas a interação genótipo e tipo de adubação foi significativa. Tanto para o Clone 5 quanto para a variedade Catuaí 44, os melhores resultados foram obtidos com a adubação organomineral. E estudando cada adubação entre genótipos, a variedade Catuaí 44 apresentou resultados superiores ao Clone 5 e Clone 11 nas adubações mineral e orgânica, e superior ao Clone 11 na adubação organomineral (Tabela 6).

Tabela 6: Interação entre os genótipos e o tipo de adubação para a variável número de folhas

Tipos de adubação		Genótipos	
adubação	Clone 5	Clone 11	Catuaí 44
Mineral	72.5 Bab	66.2 Ab	81.7 Ba
Orgânica	77.2 Bb	68.6 Ab	95.3 Ba
Organomineral	108.2 Aa	74.2 Ab	125.1Aa

Médias seguidas pelas mesmas letras maiúsculas na coluna e minúsculas na linha não diferem significativamente entre si, ao nível de 5% de probabilidade pelo teste de Tukey.

No estudo da variável número de ramos plagiotrópicos, apenas a interação entre genótipo e tipo de adubação foi significativa. Observou-se que tanto o Clone 5 quanto a variedade Catuaí 44, apresentaram resultados superiores nos tratamentos com adubação organomineral. E analisando cada adubação entre genótipos, o Clone 11 apresentou resultado inferior aos demais tanto na adubação mineral quanto na organomineral (Tabela 7).

Tabela 7: Interação entre os genótipos e o tipo de adubação para a variável número de ramos plagiotrópicos

Tipos de		Genótipos	5
adubação	Clone 5	Clone 11	Catuaí 44
Mineral	10.6Bab	9.4 Ab	11.3 Ba
Orgânica	10.4 Ba	9.8 Aa	11.5 Ba
Organomineral	12.7 Aa	8.8 Ab	14.1 Aa

Médias seguidas pelas mesmas letras maiúsculas na coluna e minúsculas na linha não diferem significativamente entre si, ao nível de 5% de probabilidade pelo teste de Tukey

Discussão

Para a variável área foliar, número de folhas e número de ramos a adubação organomineral apresentou resultados superiores na maior parte dos tratamentos avaliados quando comparado com os demais tipos de adubação. Isso pode ter ocorrido porque a adubação organomineral, além de fornecer os nutrientes através do adubo mineral é uma fonte rica em matéria orgânica o que melhora as condições físicas do solo, a aeração, a estrutura e a porosidade, favorecendo ainda mais o desenvolvimento das plantas. CERVELLINE et al., (1994) estudando a calagem e adubação mineral e orgânica do cafeeiro no município de campinas, SP, verificaram que o esterco adicionado ao fertilizante mineral (NPK) aumentava a produção de café.

Verificaram-se também para o mesmo tipo de adubação, diferenças entre os genótipos. Isto pode ter ocorrido devido a características morfofisiologicas diferentes entre as plantas estudadas.

Com relação a área foliar, uma planta com elevação desta variável poderá ter maior capacidade de produzir e de armazenar fotoassimilados em sua copa, Ω que posteriormente poderá minimizar efeitos de depauperamento (RENA e MAESTRI, 1985). E com relação ao número de folhas, verifica-se que estes órgãos são extremamente importantes no processo fotossintético e produção de carboidratos (RENA e MAESTRI, 1986), sendo grandes geradoras de energia para o crescimento e produção da planta.

Uma planta com maior número de ramos plagiotrópicos é desejável, pois está associado a um maior número de nós, podendo com isso condicionar um maior número de ramificações secundárias e rosetas florais, proporcionando um incremento na produção da planta.

Com relação aos corretivos de solo, os mesmos podem não ter expressado o seu potencial de correção pelo fato do solo estar com pH próximo do normal para a cultura do cafeeiro e também porque o período de avaliação de seis meses pode não ter sido suficiente visto que as plantas de café têm um crescimento lento e ainda poderiam responder de maneira expressiva a correção.

Conclusões

Nas condições avaliadas não houve diferenças significativas no desenvolvimento inicial das mudas de cafeeiro com os corretivos estudados.

A adubação organomineral apresentou-se mais eficiente proporcionando maior desenvolvimento inicial das plantas de cafeeiro em condição de casa de vegetação.

Referências

- BARROS, R.S.; MAESTRI, M.; VIEIRA, J.; BRAGA FILHO, L.J. Determinação da área foliar em café (*Coffea arabica L.* cv. 'Bourbon Amarelo'). **Revista Ceres,** Viçosa, v.20, n.107, p.44-52, 1973.
- CERVELLINI, G. S.; IGUE, T.; TOLEDO, S. V. Calagem e adubação mineral e orgânica do cafeeiro na região de campinas. **Bragantia**, Campinas, v.53, n.2, p. 273-280, 1994.
- GOMIDE, M.B.; LEMOS, O.V.; TOURINO, D.; CARVALHO, M.M.; CARVALHO, J.G.; DUARTE, C.S. Comparação entre métodos de determinação de área foliar em cafeeiros Mundo Novo e Catuí. **Ciência e Prática**, Lavras, v.1, n.2, p.118-123, 1977.
- PRADO, R.M. Resposta da cultura da cana-deaçúcar à aplicação de escória silicatada como corretivo de acidez do solo. Ilha Solteira, 2000. 97p. Dissertação (Mestrado) - Faculdade de Engenharia de Ilha Solteira, Universidade Estadual Paulista "Júlio de Mesquita Filho".
- PRADO, R.M.; FERNANDES, F.M. Eficiência da escória de siderurgia em Areia Quartzosa na nutrição e na produção de matéria seca de canade-açúcar cultivada em vaso. **STAB Açúcar, Álcool e Subprodutos**, v.18, p.36-39, 2000a.
- PRADO, R.M.; FERNANDES, F.M. Escória de siderurgia e calcário na correção da acidez do solo cultivado com cana-de-açúcar em vaso. **Scientia Agricola**, v.57, p.739-744, 2000b.
- PRADO, R.M.; FERNANDES, F.M.; NATALE, W. **Uso agrícola da escória de siderurgia no Brasil**: estudos na cultura da cana-de-açúcar. Jaboticabal: FUNEP, 67p. 2001.
- PREZOTTI, L.C.; GOMES, J.A.; DADALTO, G.G. & OLIVEIRA, J.A. de. Manual de Recomendação de Calagem e Adubação para o Estado do Espírito Santo. 5ª aproximação. Vitória, ES, SEEA/INCAPER/CEDAGRO, 305p. 2007.
- RENA, A.B., MAESTRI, M., Fisiologia do cafeeiro. **Informe Agropecuário**., v.11, n.126, p. 26-40, 1985.
- RENA, A.B. & MAESTRI, M. Fisiologia do cafeeiro. In: Rena AB, Malavolta E, Rocha M & Yamada T. (Eds). Cultura do cafeeiro: fatores que afetam a produtividade. Piracicaba: **POTAFOS**. p. 3 85. 1986.