

ROBÔ BÍPEDE COM ARTICULAÇÕES NOS TORNOZELOS E NA CINTURA

G. S. M. Pedro¹, A. R. Silva², João Valdecir Bento³, Leandro Costa Camargo⁴, Luis Filipe Wiltgen Barbosa^{5.}

^{1,2,5}LRA/FEAU/UNIVAP – São José dos Campos – SP ¹gustavo.smp@hotmail.com ²alexandrorsilva1@bol.com.br e ⁵wiltgen@univap.br

³LIT/INPE – São José dos Campos – SP valdecir@lit.inpe.br

⁴Johnson&Johnson – São José dos Campos – SP camargo.leandro@gmail.com.

Resumo - Este artigo apresenta o desenvolvimento e montagem da sexta geração de robôs bípedes desenvolvidos no Laboratório de Robótica & Automação da Engenharia Elétrica (LRA) da Faculdade de Engenharias, Arquitetura e Urbanismo (FEAU/UNIVAP). Este novo robô bípede antropomórfico e autônomo se locomove através de articulações nos quadris, joelhos e nos tornozelos proporcionando assim maior equilíbrio e maior velocidade na sua locomoção. É constituído de um quadril e possui movimentos de extensão/flexão e adução/abdução, joelhos com movimentos de extensão/flexão e tornozelos que apresentam movimentos de extensão/flexão, além de rotação lateral. Neste novo modelo de robô bípede as pernas mecânicas são estruturalmente semelhantes as do ser humano no que diz respeito às articulações básicas de pés, joelhos e quadril, possibilitando assim o estudo mais detalhado da dinâmica de robôs bípedes, abrindo um novo caminho nas pesquisas realizadas no LRA em robótica.

Palavras-chave: Robô, bípede, servomotor, microcontrolador, controle. **Área do Conhecimento:** III Engenharias

Introdução

Desde a antigüidade têm-se relatos a respeitos de autômatos construídos pelo homem. Distinguem-se, entre eles, os brinquedos e bonecos mecânicos que ainda podem ser vistos em museus.

Podem ser citadas também, máquinas históricas relacionadas ao entretenimento e a diversão, que executavam um tipo de programação primitiva obtida via a utilização de correias e roldanas interligadas a molas metálicas, que ficavam comprimidas por um sistema travamento mecânico.

Devido à manipulação de objetos ser um tipo de atividade muito comum no setor industrial foi necessário, com o tempo, realizar grandes avanços tecnológicos para que os primeiros robôs industriais fossem desenvolvidos.

Dentre as máquinas mais comuns a estrutura constituída de segmentos e juntas, dispostos em uma forma serial, conferindo-lhe uma forma antropomórfica, é sem dúvida um dos principais robôs industriais por fazer analogia a um braço ou uma perna humana.

Este projeto contempla o desenvolvimento e a montagem de um robô bípede sofisticado, partindo dos conhecimentos adquiridos no desenvolvimento contínuo das últimas cinco máquinas construídas no Laboratório de Robótica & Automação (LRA) da Engenharia Elétrica da FEAU/UNIVAP. Este novo robô será implementado um novo sistema mecânico permitindo melhorar sua locomoção, ou seja, melhorando sua marcha a fim de que este possa caminhar de uma forma natural (PEREIRA, 2006) e (MACHADO, 2007).

Este robô bípede segue a linha de pesquisa do LRA/FEAU, sendo que esta é a sexta geração de robôs antropomórficos ou robôs bípedes. Esta nova máquina é constituída de articulação na cintura, joelhos e pés, fazendo com que este robô tenha maior equilíbrio e estabilidade inclusive me movimentos de rotação lateral.

Uma estabilidade maior permitirá diminuir o tamanho dos pés do robô, o que irá repercutir diretamente na agilidade na marcha do robô, para que este se aproxime ao máximo da marcha humana (SANTANA, 2005).

Este novo robô, assim como, os anteriores, o mesmo está sendo construído com recursos financeiros limitados. Diante deste desafio surgiram, como sempre, soluções criativas e de baixo custo para a montagem do robô, como por exemplo, as rótulas utilizadas nos tornozelos como será visto a diante no decorrer do artigo.

A fim de tornar o robô autônomo, a fonte de energia será baseado no mesmo tipo de bateria

utilizado na quarta geração, que proporcionou um bom desempenho e grande eficiência na autonomia robô (BENTO, 2007).

Este trabalho tem o objetivo de atender à proposta técnica e educacional de incentivar os estudantes de engenharia elétrica a continuarem as pesquisas na área de robótica, especialmente nos robôs bípedes.

Aspectos Construtivos do Robô Bípede

Estrutura Mecânica do Robô Bípede

Partindo da idéia de construir um novo tipo de robô bípede, foram estudadas formas diferentes para os movimentos das pernas, entre elas, o mais estudado, o robô da quarta geração com articulações na base e joelho (BENTO, 2007).

No robô bípede da quarta geração do LRA foi utilizado um sistema especial para os movimentos de flexão e extensão via o travamento dos joelhos. O que não será necessário para este robô, dado a construção mecânica adotada nesta nova estrutura da perna (Figura 1).

O acesso às informações técnicas referentes aos robôs das gerações anteriores propiciou o desenvolvimento deste novo protótipo dotado de uma estrutura mais leve e mais robusta, de modo a não intervir em sua sustentação e equilíbrio.

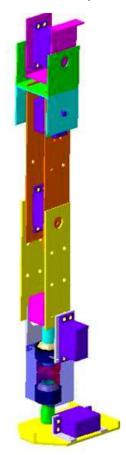


Figura 1- Imagem digital de uma perna do robô

A Tabela 1 mostra os aspectos construtivos das pernas do robô.

Tabela 1- Dados de uma perna do robô

Material	Aluminio
Altura	50cm
Peso	1,5kg
Dimensões do Pé	110 x 85 x 3mm
Qtde. de sevomotor	5
Articulações	3
Grau de liberdade	5

Neste robô, assim como, ocorreu com as outras versões será construído em alumínio. Entretanto, agora patrocinado pela empresa Novelis do Brasil. O metal do tipo alumínio possui muitas vantagens na construção destes robôs, baixo custo, fácil manuseio e muito leve.

No início do projeto havia uma proposta de tentar construir as pernas do robô em plástico do tipo *PVC*, porém este material não possui resistência mecânica adequada sendo definitivamente abandonada.

A estrutura da cintura do robô será construída em alumínio, e terá os movimentos de adução e abdução, além dos movimentos de flexão e extensão. Para obter tal liberdade de movimentos foi implantado um sistema, que inicialmente havia sido projetado apenas para o tornozelo, mas que se mostrou muito interessante e eficiente no funcionamento da cintura do robô.

Este sistema é constituído de um conjunto de três peças em alumínio com o formato em "U", sendo que cada um destes conjuntos será utilizado em cada perna. Cada conjunto possui dois servomotores, atuando de forma a obter os movimentos necessários

Os joelhos são construídos em um sistema clássico que é formado por um servomotor devidamente fixado entre duas chapas de alumínio, formando a parte intermediária (coxa – em marrom na Figura 1) da perna do robô, como o eixo do servomotor esta conectado a outras duas chapas, que formaram a parte inferior (canela – em amarelo na Figura 1) da perna do robô, a estrutura fica completa.

Em paralelo com o eixo é fixado um rolamento para que o peso suportado pela junta seja igualmente distribuído entre o eixo do servomotor e o rolamento, de forma a não danificar as engrenagens da caixa de redução e troque dos servomotores desta junta.

A articulação dos tornozelos é a parte mecânica mais complexa do projeto, pois o tornozelo tem que executar os movimentos de inversão e eversão além da flexão e extensão, muitas vezes simultaneamente, e este é susceptível ao estresse mecânico do constante impacto com o solo.

Para isso criou-se uma peça a qual chamou-se de peça "H", no qual duas rótulas foram implantadas para possibilitar os movimentos de rotação lateral. Esta peça é fundamental para fazer com que o robô possa andar mantendo-se em equilíbrio (Figura 4). As rótulas são peças prontas e comerciais, confeccionadas em PVC, além de proporcionarem liberdade necessária para os movimentos desejados deste robô, as mesmas são muito leves e possuem a resistência mecânica suficiente para seu funcionamento nesta máquina.

Figura 4- Peça do pé do robô com rótulas

O pé do robô, devido aos sistemas projetados para a cintura e tornozelos, mesmo sendo pequeno possui maior estabilidade e equilíbrio, do que as versões anteriores. Este novo tamanho e formato dos pés do robô permitem obter alguma semelhança com os pés humanos. Assim como, as outras peças deste robô, o pé também é construído em alumínio. Esta peça talvez tenha sido a que sofreu mais modificações durante seu desenvolvimento.

A Figura 5 mostra o tornozelo e o pé montado com os servomotores integrados.

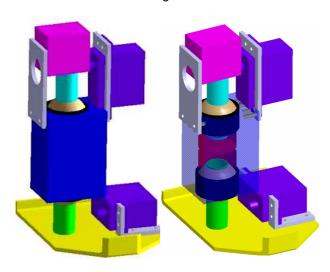


Figura 5- Pés e sistemas do tornozelo com rotulas

Sistema Elétrico do Robô Bípede

O sistema elétrico do robô é composto por: sistema de alimentação, circuito do microcontrolador e servomotores.

Para alimentação dos servomotores, optou-se pelas baterias de *Níquel Metal Hidreto* (NiMh) da Sony® modelo *NH-AA-2DB*, 2.500 mAh e 1,2V (tipo AA), as mesmas utilizadas nas gerações anteriores e com rendimento comprovado devido à sua alta densidade de carga e peso compatível com a aplicação.

Estas baterias fornecem ~1,2 V cada, sendo que foram necessárias sete delas ligadas em série para atingir-se a tensão de ~7,2V para o funcionamento dos servomotores.

O circuito de alimentação do microcontrolador e dos sensores é separado do circuito dos motores para evitar ruídos e picos de tensão que comprometam os sinais de controle.

O robô é composto por dez servomotores modelo *MG995*, fabricados pela *Towerpro*®. Estes são distribuídos da seguinte forma: dois na cintura, um no joelho, dois no tornozelo para cada uma das pernas. No quadril, foram utilizados servomotores de 13 kg-cm, o mesmo utilizado no joelhos e tornozelos, no qual existe a necessidade de um troque relativamente alto.

A Tabela 2 apresenta as características técnicas dos servomotores utilizados no robô.

Tabela 2 - Dados técnicos do servomotor MG995

Torque	4.8V: 13Kg/cm
	6.0V: 15Kg/cm
Velocidade de reação	4.8V : 0.17s / 60 graus
	6.0V: 0.13s / 60 graus
Dimensões	40 x 20 x 36,5mm
Peso	48g
Faixa de temperatura	-30 a +60 ℃
Tempo de reação	4µs
Tensão de operação	3.5 - 8.4V

Sistema de Controle do Robô Bípede

Este projeto prevê um modelo de robô autônomo com movimentos coordenados e mais precisos que os das gerações anteriores.

Para o controle dos movimentos deste robô optou-se pelo microcontrolador *PIC16F877A*, devido ao seu baixo custo e flexibilidade de programação, que aceita o desenvolvimento do firmware, tanto *Basic*, quanto em linguagem C. Este modelo de microcontrolador possui um numero de portas de entradas e saídas, em quantidade suficiente para a aplicação.

Serão utilizados também sensores de movimento em três eixos que possibilitarão maior controle sobre os movimentos do robô. Os

sensores serão instalados nas articulações para se obter o controle mais efetivo dos movimentos, estes sensores poderão sofrer alterações de fixação durante os testes dos movimentos.

Com a utilização destes sensores, o sistema de controle passará a ser em malha fechada (realimentado). Diferentemente dos robôs bípedes anteriores, o controle realimentado permite a correção do erro na saída do sinal de controle, representando um grande avanço para os projetos desta categoria de robôs, dentro da mesma linha de pesquisa.

Resultados

Por tratar-se de um projeto com certo grau de complexidade, nem tudo pode ser definido para a montagem final do robô. Algumas destas definições estão atreladas aos resultados práticos de testes que ainda não foram realizados.

Até o presente momento as peças referentes à parte mecânica estão sendo confeccionadas na Oficina Mecânica da Univap.

Está em estudo também, o *firmware* que controlará o robô, e os atuadores, via os sinais dos sensores do tipo acelerômetros que serão instalados nas juntas das pernas do robô.

Conclusão

Como este projeto encontra-se na fase de montagens da estrutura mecânica do robô, ainda não foi possível testar a nova máquina em macha. Entretanto, o grande desafio na construção deste robô foi a nova estrutura mecânica necessária para o estudo que possui articulações nos tornozelos e na cintura aumentando seu equilíbrio e podendo desta forma ter maior velocidade nos seus movimentos, bem como imitar de forma mais real os movimentos humanos.

Agradecimentos

Agradecemos a todos os envolvidos no projeto, nosso professor e orientador o engenheiro *Dr. Luis Filipe Wiltgen Barbosa* e aos nossos coorientadores, *Eng. José Valdecir Bento* e *Eng. Leandro Costa Camargo* pelo apoio, idéias e incentivo.

Aos técnicos mecânicos da UNIVAP Sr. Celso Erasmo de Oliveira e Sr. Laércio César de Oliviera e ao mecânico Sr. Carlos Alberto Consiglio que confeccionaram as peças utilizadas neste robô.

Os autores agradecem a empresa Novelis do Brasil Ltda pelo apoio ao *Laboratório de Robótica* & *Automação da FEAU/UNIVAP* com o fornecimento de alumínio para a construção deste protótipo experimental.

Referências

- PEREIRA, R.F.O; FREIRE, M.L.; BARBOSA, L.F.W. Robô Bípede Simples e Autônomo para o Ensino de Robótica na Prática. In: Encontro Nacional de Estudantes de Engenharia de Controle e Automação, 6., 2006, Curitiba, PR. Anais. Curitiba: PUCPR, 2006. 1 CD-ROM.
- BENTO, J.V.; CAMARGO, L.C.; PEREIRA, R.F.O.; AREDES, S.V.; BARBOSA, L.F.W.; Robô Bípede Multifuncional. In: Encontro Latino Americano de Iniciação Científica, 10, 2007, São José dos Campos, SP. Anais. São José dos Campos: UNIVAP, 2007. 1 CD-ROM.
- SANTANA, R. E. S. **Projeto de um robô Bípede para a reprodução da marcha humana.** 2005. 188 f. Dissertação (Mestrado em Engenharia Mecânica) Departamento de Engenharia Mecânica, Escola Politécnica da USP, São Paulo, 2005. Disponível em: http://www.teses.usp.br. Acesso em: 15 fev. 2008
- MACHADO, R.S.; SANTOS, S.V.; BARBOSA, L.F.W.; **Desenvolvimento de um Robô Bípede controlado pela porta USB**. In: Encontro Latino Americano de Iniciação Científica, 10, 2007, São José dos Campos, SP. Anais. São José dos Campos: UNIVAP, 2007. 1 CD-ROM.
- FREIRE, M.L.; PEREIRA, R.F.O.; BARBOSA, L.F.W.; **Desenvolvimento de um Robô Bípede Capaz de Fazer Curva**. In: Encontro Latino Americano de Iniciação Científica, 10, 2007, São José dos Campos, SP. Anais. São José dos Campos: UNIVAP, 2007. 1 CD-ROM.
- BENTO, J.V.; CAMARGO, L.C.; PEREIRA, R.F.O.; AREDES, S.V.; BARBOSA, L.F.W. Terceira Geração de Robô Bípede do Laboratório de Robótica da FEAU/UNIVAP Agora Utilizando Joelhos. In: Encontro Nacional de Estudantes de Engenharia de Controle e Automação, 7., 2007, Recife, PE. Anais. Recife: UPE, 2007.