

UNIVAP ALL-SKY FILTER ANALISYS TOOL – "UASFAT"

Rodrigo Sant Anna Lima, Valdir Gil Pillat, José Ricardo Abalde Guede

UNIVAP / FCSAC, Av. Shishima Hifumi, 2911, Urbanova, S.J.Campos – SP, rodrigosantannalima@gmail.com, valdirgp@univap.br, abalde@univap.br

Resumo - Neste trabalho, é apresentado o desenvolvimento de uma ferramenta computacional que auxilia o tratamento dos dados observacionais(imagens), obtidos pelos fotômetros imageadores operados pelos pesquisadores do Grupo de Física Solar do Instituto de Pesquisas e Desenvolvimento – IP&D da UNIVAP. A rede de equipamentos ópticos opera rotineiramente, obtendo imagens de diferentes emissões da camada ionosférica da atmosfera terrestre, através de seus respectivos filtros de interferência permitindo, assim, um acompanhamento espaço – temporal da dinâmica da região ionosférica. O programa computacional é uma ferramenta simples de operar e com resultados eficientes na obtenção da análise estatística destes dados, tratamento importante para a pesquisa, estudo e entendimento da física presente nesta área da atmosfera terrestre com aplicações na aeronavegação e posicionamento global. O usuário pode efetuar e apresentar estas análises através de gráficos de dispersão (XY) e por meio de relatórios específicos e detalhados.

Palavras-chave: fotômetro imageador, imagens, plasma ionosférico, tratamento de dados, Visual Basic.

Área do Conhecimento: I - Ciências Exatas e da Terra, Ciência da Computação.

Introdução

A ionosfera, é a porção ionizada da atmosfera terrestre, com a presença de pares íons e elétrons produzidos, principalmente, pela absorção de radiação solar (fotoionização).A camada ionosférica pode ser dividida em três regiões básicas (ver Figura 1).

A região D é a mais inferior, localizada entre 70 km e 90 km de altitude e que desaparece no período noturno, devido à recombinação e falta da geração de novos íons pela radiação solar. Esta camada tem a capacidade de refletir os sinais de rádio de baixa freqüência. As altas freqüências passam através e sofrem forte atenuação.

A região E está localizada entre 90 km e 150 km de altitude, perde rapidamente íons durante o período do pôr-do-sol e também desaparece durante o período noturno.Tem capacidade de refletir sinais de rádio em freqüências médias, mais altas do que as que são refletidas pela região D.

A região F é a camada superior, localizada acima da camada E e pode ser subdividida em F1 e F2. É a de maior densidade de ionização em comparação às camadas D e E. Similar às camadas D e E, a camada F1 é observável somente durante o dia e estende-se de 150 km a 200 km de altitude. A camada F2 perdura durante а noite е estende-se de 200 km até aproximadamente 1000 km de altitude, apresentando um pico de máxima densidade iônica ao redor dos 300 km de altitude. Acima deste pico de reflexão, a densidade diminui até não mais existir e se fundir com a magnetosfera (KIRCHHOFF, 2000; SCHUNK e NAGY, 2000; PILLAT, 2005; DE FREITAS, 2007).

O estudo do comportamento do plasma, porção ionizada da atmosfera terrestre, presente nesta região da atmosfera, pode ser feito com o óptico denominado fotômetro equipamento imageador, que através de filtros de interferência obtém amostras / imagens do céu em diferentes emissões que são os fótons característicos de determinadas reações químicas que acontecem região. Assim, estas emissões estão na relacionadas com a posição e densidade das respectivas partículas e pode-se ter uma visão da morfologia desta região (WRASSE, 2000; DE FREITAS, 2007).

Figura 1 – Distribuição vertical da densidade eletrônica da atmosfera terrestre e camadas ionosféricas em função do ciclo solar e horário.(DE FREITAS, 2007).

O Grupo de Física Solar do IP&D / UNIVAP possui um software próprio e específico para a

análise destas observações: UASDA - "Univap All-Sky Data Analisys" (PILLAT e FAGUNDES, 2004), que carecia de uma ferramenta de análise estatística a respeito dos dados coletados nos de operação dos três fotômetros anos imageadores operados nos municípios de São José dos Campos - SP, Brazópolis - MG e Palmas - TO. Estas análises estatísticas dos horários de observação, dias observados e tipo de filtros são extremamente importantes na conclusão dos estudos desenvolvidos a partir deles.

A solução proposta foi à criação de uma ferramenta computacional denominada UASFAT – *"Univap All-Sky Filter Analisys Tool"*,capaz de acessar tais dados (imagens do céu em cada emissão), e efetuar uma análise gerando arquivos específicos(denominados arquivos anuais), com os valores das datas, horários e respectivos filtros que se tem armazenados. A partir destas informações, o programa deve apresentar os resultados da análise na forma de gráficos de dispersão (comumente chamados de XY) e gerar, através destas mesmas informações, os respectivos relatórios.

Metodologia e primeiros resultados

o desenvolvimento da ferramenta Para computacional proposta, foi mantida a linguagem de programação ou aplicativo Visual Basic (Versão 6.0) que requer ter instalado o Sistema Operacional Microsoft Windows (98,2000,XP ou Vista) fazendo, assim, compatível com o programa acima citado e permitindo UASDA sua incorporação futura a este como um aplicativo de análise dos dados / imagens dos fotômetros imageadores (MSDN, 2008).

Figura 2. Organização dos dados/imagens para cada diretório de observatório / fotômetro imageador operacional da UNIVAP.

O desenvolvimento do trabalho foi iniciado com a análise e compreensão da forma em que os dados / imagens são armazenados e organizados no banco de dados digital. A Figura 2 apresenta um esquema gráfico da estrutura de organização dos dados/imagens.

A execução da ferramenta computacional contempla, inicialmente, a seleção do observatório a ser analisado. Cada arquivo de dado ou imagem está no respectivo diretório onde se opera o fotômetro imageador: São José dos Campos -SJC, Brazópolis - LNA ou Palmas - PAL. Vinculado ao diretório do observatório, está o subdiretório Ano, em que foram obtidas as imagens. Vinculado ao Ano, encontra-se,o subdiretório Mês/Dia,onde ficam armazenas todas as imagens obtidas pelo fotômetro imageador nessa noite de operação e são armazenadas em arquivos com nomenclatura no formato FILTRO_DATA_HORA.tif. A denominação do arquivo indica o tipo de filtro de interferência que estava ativo na roda de filtros no momento do registro da imagem do céu noturno, a data no formato aaaa/mm/dd(ano/mês/dia) e a hora no formato hh:mm:ss(hora:minuto:segundo). A Figura 3 mostra o fluxograma deste processo.

Figura 3. Diagrama de fluxo inicial da ferramenta projetada para análise das imagens.

Uma vez selecionado o observatório e o ano a ser analisado, a ferramenta computacional inicia a geração do arquivo contendo as informações estatísticas das imagens, e este arquivo será responsável pela geração dos gráficos de dispersão (XY) e pela geração dos relatórios detalhados que podem ser solicitados.

Ao iniciar o uso da ferramenta computacional "UASFAT", é exibida a interface gráfica do menu principal (ver Figura 4), que apresenta as funcionalidades da ferramenta computacional "UASFAT".Na opção "Funcionalidades", estão descritas as opções "Selecionar" e "Sair", sendo que esta última escolha leva a finalizar o uso da

ferramenta. No caso de optar pela primeira opção, surgem duas novas opções: "Observatório" e "Arquivo".

Figura 4. Interface gráfica da ferramenta computacional UASFAT, "Menu Principal"; Nesta interface gráfica, o usuário pode acessar as principais opções disponíveis.

Na escolha da opção "Observatório", a ferramenta computacional "UASFAT" solicita ao usuário que escolha o observatório e ano a ser analisado. No caso da opção "Arquivo" é exibido ao usuário, os arquivos previamente gerados pela opção "Observatório". A Figura 5 exibe o gráfico que a ferramenta computacional "UASFAT" é capaz de gerar a partir do arquivo que contém todas as informações referentes as observações anuais do observatório previamente escolhido.

Figura 5. Interface gráfica da ferramenta computacional UASFAT, "Gráfico"; Nesta interface gráfica, é gerado o gráfico de dispersão (XY) exemplificando os dados disponíveis para o usuário.

Nesta interface gráfica, é realizada a plotagem dos dados disponíveis e armazenados no histórico das observações adquiridas pela operação rotineira dos três fotômetros imageadores. Nesta etapa a ferramenta computacional "UASFAT" solicita que o usuário / pesquisador selecione o filtro ou filtros que deseja analisar, bem como o período em consideração (ano ou fração dele, mês) e clicar no botão descrito como "Plotar". Depois de ativada esta opção, é plotado na tela do computador o gráfico que exibe os dias e seu período em horas em que se tem dados disponíveis. A opção "Escala Manual", permite uma atualização com um ajuste personalizado na escala dos dias corridos que serão exibidos no gráfico.

A opção "Relatório" permite a geração dos relatórios.Nela, é exibida uma janela que tem como objetivo gerar relatórios que contenham os valores da análise estatística realizada pela ferramenta computacional "UASFAT" para os parâmetros contidos no arquivo anual.

Figura 6. Interface gráfica da ferramenta computacional UASFAT "Relatório"; Nesta interface gráfica, é exibida ao pesquisador, uma pequena janela para que o mesmo possa efetuar a geração dos relatórios.

A Figura 6 apresenta a interface gráfica "Relatório", onde deve ser selecionado o período(ano e ou mês) para o qual se deseja gerar o relatório.Uma vez indicada esta seleção, e ativado 0 botão "Gerar Relatório".a ferramenta computacional fará uma varredura no arquivo anual para o período selecionado.Caso contenha dados disponíveis, será exibida uma mensagem de confirmação.Caso contrário, uma mensagem indicará a indisponibilidade de dados disponíveis para a geração do relatório para o período indicado.

A Figura 7 exibe um exemplo do relatório gerado para o período e conjunto de filtros especificados.

Estes relatórios apresentam sua data de geração, o observatório de origem e o ano, o período analisado em "Amostras do Mês" e os dias corridos em "Faixa".Logo abaixo, os itens "Dias", "Filtro", "H.Inicio", "H.Fim" e "H.Total" que descrevem o dia corrido, o filtro analisado dentre os possíveis (FOI6300, FOI7774, FOI5577, F02, FNAD, FOH, FN2 e FBG), a hora de início e de fim da observação para cada um dos filtros e o

período total de dados disponíveis para a observação feita com cada um dos filtros para essa noite.

Relatório UASFAT				
Data: 27-05-2008 Observatório: LNA Ano: 2004 Amostras do Mês: Fevereiro Faixa: 32 – 61				
Dia	Filtro	H.Inicio	H.Fim	H.Total
40	02	20:27:36	21:46:37	01:19:01
40	NAD	19:45:11	22:20:46	02:35:35
40	N2	19:37:59	22:14:34	02:36:35
40	BG	19:36:11	22:11:42	02:35:31

Figura 7. Exemplo de "Relatório" gerado pela ferramenta computacional "UASFAT".

Estes relatórios, são armazenados em arquivos para posterior disponibilidade e uso.

Discussão

A ferramenta computacional UASFAT-"Univap All-Sky Filter Analisys Tool", foi projetada e implementada para fornecer um ambiente prático e simples de operar na análise estatística dos dados disponíveis para a qual foi feita.O usuário tem uma maior produtividade, performance, estabilidade, segurança e confiabilidade se comparada com o procedimento manual anteriormente empregado.

Recomenda-se para uma posterior versão da ferramenta computacional "UASFAT", que se leve em consideração os diferentes formatos de nomeação dos dados ou imagens em que foram obtidos e armazenados pelo programa de operação e aquisição dos equipamentos fotômetro imageadores(Programa Operalmageador).Durante o período de 2000 a 2002 o formato adotado para nomear imagens foi forma as na FILTRO_DATA_HORA.tif em substituição ao formato atual FILTRO_DATAHORA.tif. Uma possibilidade de renomeação dos arguivos visa sanar completamente problemas em relação aos vários formatos de nomeação das amostras.

Devemos também contemplar a possibilidade de salvar as imagens dos gráficos em formatos simples(JPEG ou PNG) e práticos para posterior uso em relatórios e artigos de pesquisa que venham a ser necessários.

Conclusão

A ferramenta computacional UASFAT-"Univap All-Sky Filter Analisys Tôo"l, gerada para a análise estatística dos dados / imagens obtidos na operação rotineira dos três equipamentos fotômetros imageadores do Grupo de Física Solar do IP&D / UNIVAP, mostrou ser fácil, simples e versátil. A maior contribuição que tal ferramenta propicia, é a praticidade, facilidade, rapidez e precisão nos resultados finais em contraste com o processo manual que tomava grande tempo dos usuários, pesquisadores e alunos, os quais podiam não ser precisos, apresentando erros de procedimentos, valores lidos e conseqüentemente possíveis erros nos valores da análise final.

Agradecimentos

Agradecimentos ao Instituto de Pesquisa e Desenvolvimento(IP&D)/ Laboratório de Física e Astronomia(LFA)-UNIVAP, pela estrutura de trabalho disponibilizada е auxílio dos pesquisadores e ao CNPq, pela bolsa de iniciação científica(IC) concedida pelo processo nº 118114/2007-7.

Referências

- KIRCHHOFF, V. W. J. H., Introdução à Geofísica Espacial, Editora da Universidade de São Paulo, 1º Edição, São Paulo, 1991.

- MSDN – *Microsoft Developer Network*, Documentação Completa da linguagem de programação Visual Basic, http://msdn.microsoft.com/en-us/default.aspx, acessado em 20/04/2008.

- PILLAT, V. G. ; FAGUNDES, P. R., UASDA – *Univap All Sky Analysis*, calibração da lente do fotômetro imageador, In: VIII Encontro Latino Americano de Iniciação Científica e IV Encontro Latino Americano de Pós-Graduação, Univap, São José dos Campos, 2004.

- PILLAT, V. G. ; FAGUNDES, P. R., BITTENCOURT, J. A., Estudo da ionosfera atraves de simulacao numerica, In: IX Encontro Latino Americano de Iniciação Científica e V Encontro Latino Americano de Pós-Graduação, Revista UNIVAP, Vol. 1, pag. 1-6, São José dos Campos, 2005.

- DE FREITAS, T. F.; Determinação da Densidade Eletrônica no Pico da Camada F lonosférica Utilizando as Imagens na Emissão do OI-777.4 nm, Dissertação de Mestrado do Programa de Pós-graduação em Física e Astronomia da UNIVAP,São José dos Campos, 2007.

- WRASSE, C. M., Observação da Temperatura Rotacional da Hidroxila através da Aeroluminescência na Região da Mesosfera, Dissertação de Mestrado em Geofísica Espacial, MCT / INPE,São José dos Campos, 2000.

- SCHUNK, R. W., NAGY, A. F., Ionospheres Physics, Plasma Physics and Chemistry, – Cambrigde University Press, First Editon, Cambridge, 2000.