

RESPOSTA DA CAMADA F IONOSFÉRICA OBSERVADA POR GPS DURANTE A SUPERTEMPESTADE GEOMAGNÉTICA OCORRIDA EM ABRIL DE 2000

Alessandro José de Abreu, Yogeshwar Sahai, Paulo Roberto Fagundes, Fábio Becker Guedes, Fernando Luís Guarnieri, Alan Prestes, Valdir Gil Pillat

Universidade do Vale do Paraíba/IP&D, Avenida Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP, 12244-000, abreu.alessandro@gmail.com

Resumo - Este estudo tem por objetivo investigar o comportamento da camada F ionosférica em regiões equatorial e de baixas latitudes no setor brasileiro durante a supertempestade geomagnética que ocorreu em abril de 2000 (definido como critério o índice |Dst| > 250 nT). Nesta investigação foram analisadas observações realizadas por 4 estações de GPS localizadas em Imperatriz (5,5° S; 47,5° O; lat. dip 2,9° S), Brasília (15,9° S; 47,9° O; lat. dip 11,7° S), Presidente Prudente (22,3° S; 51,4° O; lat. dip 14,9° S) e Porto Alegre (30,1° S; 51,1° O; lat. dip 20,7° S). A variação temporal do conteúdo eletrônico total vertical (VTEC) e flutuações de fase ou taxas de variações do TEC (ROT) inferidos através das observações de GPS é utilizada para estudar o impacto desta supertempestade na ionosfera tropical. Pode-se mencionar que os efeitos observados durante este evento incluem duas subidas da camada F na região equatorial e duas fortes flutuações de fase no período noturno.

Palavras-chave: Camada F, Tempestade Geomagnética, GPS **Área do Conhecimento:** Ciências Exatas e da Terra

Introdução

A parte ionizada da atmosfera terrestre, denominada ionosfera, é responsável por diversos fenômenos por ser altamente influenciada pelo fluxo de radiação solar na faixa do extremo ultravioleta (EUV) e raios-X. A ionosfera pode ser dividida em várias regiões ou camadas, sendo que na camada F (entre aproximadamente 130 km e 1000 km de altitude), podem ser observadas após o pôr-do-sol, irregularidades ionosféricas. Tais irregularidades ionosféricas degradam fortemente as transmissões trans-ionosféricas no território brasileiro devido à grande extensão territorial (de dimensão continental) distribuída ao norte e ao sul do equador geomagnético.

As tempestades geomagnéticas são perturbações no campo geomagnético devido à entrada de partículas do vento solar na magnetosfera terrestre e são responsáveis para a geração ou supressão de irregularidades ionosféricas equatoriais (MARTINIS et al., 2005). Tempestades geomagnéticas ocorrem devido às erupções solares (solar flares) possivelmente associadas às ejeções de massa coronal (coronal mass ejection - CMEs), intensificando a velocidade e densidade do vento solar. Normalmente, uma tempestade geomagnética caracteriza-se por um início súbito (sudden storm commencement - SSC), na qual sinaliza a chegada de uma estrutura interplanetária, dando início a fase inicial. O SSC não é condição prévia para que uma tempestade geomagnética ocorra e se desenvolva. Inclui também uma fase principal e

uma fase de recuperação. A fase principal é decorrente de um contínuo campo magnético interplanetário em sentido ao sul, na qual ocorre uma intensificação das partículas aprisionadas na magnetosfera que devido aos gradientes do campo geomagnético e sua curvatura, levam a deriva dessas partículas, dando origem a corrente de anel. Durante esta fase, a entrada de partículas na alta latitude da atmosfera é maximizada, enquanto que na fase de recuperação, a entrada de partículas é minimizada, ou seja, a atividade geomagnética tende a normalizar-se. (GONZALEZ et al., 1994; TSURUTANI e GONZALEZ, 1997; KAMIDE et al., 1998; SCHUNK e NAGY, 2000).

Durante os períodos de tempestades geomagnéticas podem ocorrer modificacões ionosféricas nas regiões equatorial e de baixas latitudes. Estas modificações estão possivelmente relacionadas à penetração pontual de campos elétricos magnetosféricos е aos ventos perturbados gerados pelo aquecimento da alta atmosfera em conseqüência a precipitação de partículas (ABDU, 1997).

Sendo assim, o objetivo principal deste estudo consiste em investigar o comportamento da camada F ionosférica em regiões equatorial e de baixas latitudes no setor brasileiro durante a supertempestade geomagnética (definido como critério o índice |Dst| > 250 nT) que ocorreu em abril de 2000, utilizando dados do sistema de posicionamento global (GPS).

Metodologia

O sistema de posicionamento global (GPS) é composto por 24 satélites orbitando ao redor da Terra a uma altitude de aproximadamente 20.200 km e distribuídos em 6 órbitas com ângulo de inclinação em relação ao equador geográfico de 55°, transmitindo ondas eletromagnéticas nas freqüências L1 (1575,42 MHz) e L2 (1227,60 MHz) (KAPLAN e HEGARTY, 2006).

Para este estudo foram utilizados dados de GPS coletados pelas estações de Imperatriz (IMPZ), Brasília (BRAZ), Presidente Prudente (UEPP) e Porto Alegre (POAL), as quais compõem a Rede Brasileira de Monitoramento Contínuo dos Sinais GPS (RBMC) e disponibilizado pelo Instituto Brasileiro de Geografia e Estatística (IBGE). As estações escolhidas no setor brasileiro cobrem bem a região equatorial e de baixas latitudes (Figura 1). A Tabela 1 apresenta a localização de cada estação utilizada.

Os dados de GPS foram utilizados para obter as medidas do conteúdo eletrônico total vertical (VTEC) calculados em unidades de TEC (1 TECU = ~10¹⁶ elétrons m⁻²) (HOFMANN-WELLENHOF et al., 1994) e das flutuações de fase ou taxas de variações do TEC (ROT) calculados em (TECU min⁻¹) por estação (AARONS et al., 1996). Os sinais GPS para medidas do VTEC e do ROT foram obtidos sob um ângulo de elevação de 30°.

Figura 1 – Distribuição geográfica das estações de GPS.

As variações do campo geomagnético foram analisadas através dos índices AE (intensidade do eletrojato auroral), Kp (intensidade da tempestade) e Dst (intensidade da corrente de anel). O índice

AE é importante para obter informações relacionadas à ocorrência e intensidade de subtempestades (SAHAI et al., 2007). Os dados do campo magnético interplanetário total (B), da vertical do campo componente magnético interplanetário (Bz), da velocidade (Vp) e densidade de prótons (Np) do vento solar foram obtidos pelo satélite ACE e disponibilizados em (http://www.srl.caltech.edu/ace/).

Tabela 1 - Cidade, sigla, latitude e longitude geográfica
e latitude dip para cada estação.

Cidade	Sigla	Lat.	Long.	Lat. dip	
Imperatriz	IMPZ	5,5⁰S	47,5⁰O	2,9ºS	
Brasília	BRAZ	15,9⁰S	47,9ºO	11,7⁰S	
Pres.	UEPP	22,3ºS	51,4ºO	14,9ºS	
Prudente					
Porto	POAL	30,1ºS	51,1⁰O	20,7ºS	
Alegre					

Resultados

A Figura 2 apresenta os parâmetros do campo magnético interplanetário total (B), da componente vertical do campo magnético interplanetário (Bz), da velocidade (Vp) e densidade de prótons (Np) do vento solar (com resolução temporal de 64 segundos) e os índices geomagnéticos Dst (valores a cada hora), Kp (valores a cada 3 horas) e AE. A Figura 2 inclui também, dia(s) geomagneticamente calmo(s), dia(s) geomagneticamente perturbado(s) e fases da tempestade geomagnética.

Figura 2 – Parâmetros interplanetários B, Bz, Vp e Np e as variações do campo geomagnético através dos índices AE, Kp e Dst entre os dias 5 e 8 de abril de 2000.

A Figura 3 apresenta o conteúdo eletrônico total vertical (VTEC). Os valores do VTEC em linhas verdes referem-se ao dia escolhido como geomagneticamente calmo e são repetidos para todos os dias do evento. Os valores do VTEC em linhas vermelhas referem-se ao(s) dia(s) que incluem respectivamente o(s) dia(s) geomagneticamente perturbado(s), fase principal e recuperação tempestade fase de da geomagnética. A linha tracejada vertical indica o horário em que ocorreu o sudden storm commencement (SSC). A abscissa mostra o tempo universal representado por UT e o tempo local ao topo representado por LT. Cabe mencionar que LT = UT - 3h.

A Figura 4 apresenta as flutuações de fase ou taxas de variações do TEC (ROT). Como foram citadas por Wanninger (1993) e Mendillo et al. (2000), as flutuações de fase indicam a presença de irregularidades ionosféricas de grande escala ou bolhas ionosféricas (de extensão quilométrica). A Figura 4 possui o mesmo padrão de formatação da Figura 3.

Figura 3 – Conteúdo eletrônico total vertical (VTEC) entre os dias 5 e 8 de abril de 2000, para as estações de IMPZ, BRAZ, UEPP e POAL.

Discussão

A Figura 4 mostra flutuações de fase somente na noite de 5-6 de abril (noite geomagneticamente calma), antes da ocorrência de SSC (medido pelo índice Kp as 16:40 UT) nas estações de IMPZ, BRAZ e UEPP no horário entre aproximadamente 23:00 UT e 4:00 UT e na noite de 6-7 de abril (durante a fase principal da tempestade geomagnética) em todas as estações no horário entre aproximadamente 23:00 UT e 11:00 UT. Estas flutuações de fase são devidas à presença de irregularidades ionosféricas de grande escala

ou bolhas ionosféricas. Pode-se mencionar que noites de 4-5, 7-8 8-9 nas е (noite geomagneticamente calma ou fase de recuperação) não há presença de flutuações de fase (Figura 4). Esse fato é talvez devido às variações dia para dia na ocorrência de espalhamento na camada F (equatorial spread F-ESF) (MENDILLO et al., 1992). Depois da ocorrência de SSC, a Figura 2 mostra uma rápida diminuição do Dst (~60 nT h⁻¹ durante 19-23 UT), que dá condição apropriada para penetração pontual de campos elétricos magnetosféricos de alta latitude para região equatorial (BASU et al., 2005). A Figura 3 mostra que possivelmente durante o período do pôr-do-sol o campo elétrico penetrando de alta latitude se associa ao campo elétrico normal e a camada F tem forte subida na região equatorial (IMPZ). Como é discutido por Basu et al. (2001), a forte diminuição do VTEC em IMPZ no horário do pôr-do-sol indica rápida subida da camada F na região equatorial resultando em difusão de plasma ionosférico das regiões equatorial para baixas latitudes (ex., BRAZ, UEPP e POAL). A Figura 4 mostra que a rápida subida da camada F na região equatorial resultou nas fortes flutuações de fase (~00:00 UT) durante a noite de 6-7 de abril. As flutuações mais fortes são observadas nas regiões afastadas do equador geomagnético (ex., UEPP e POAL), onde a densidade eletrônica na camada F é alta. Também na noite de 6-7 de abril (~8:00 UT) durante a fase de recuperação da tempestade, voltou a ocorrer flutuações de fase possivelmente devida a uma nova subida da camada F na região equatorial (FEJER e EMMERT, 2003).

Figura 4 – Flutuações de fase ou taxas de variações do TEC (ROT) entre os dias 5 e 8 de abril de 2000, para as estações de IMPZ, BRAZ, UEPP e POAL.

Conclusão

Neste estudo foi investigado o comportamento da camada F ionosférica em regiões equatorial e de baixas latitudes no setor brasileiro durante a supertempestade geomagnética que ocorreu em abril de 2000, através de observações realizadas por 4 estações de GPS.

Pode-se concluir que observações as mostraram penetração pontual de campos elétricos magnetosféricos resultando em duas rápidas subidas da camada F na região equatorial e difusão de plasma para baixas latitudes, causando duas fortes flutuações de fase ou bolhas ionosféricas. A primeira flutuação de fase ocorreu a aproximadamente 00:00 UT e a segunda durante a fase de recuperação da tempestade a aproximadamente 8:00 UT, ambas na noite de 6-7 de abril.

Referências

- AARONS, J; MENDILLO, M; YANTOSCA, R. GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign. J. Geophysical Research, v. 101, n. A8, p. 26,851-26,862, 1996.

- ABDU, M. A. Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. **J. Atmospheric and Solar-Terrestrial Physics**, v. 5, n. 13, p. 1505-1519, 1997.

- BASU, SU; BASU, SA; VALLADARES, C. E; YEH, H. –C; SU, S. –Y; MACKENZIE, E; SULTAN, P. J; AARONS, J; RICH, F. J; DOHERTY, P; GROVES, K. M; BULLET, T. W. Ionospheric effects of major magnetic storms during the International Space Weather Period of September and October 1999: GPS observations, VHF/UHF scintillations, and in situ density structures at middle and equatorial latitudes. **J. Geophysical Research,** v. 106, p. 30389-30413, 2001.

- BASU, SA; BASU, SU; GROVES, K. M; MACKENZIE, E; KESKINEN, M. J; RICH, F. J. Near-simultaneous plasma structuring in the midlatitude and equatorial ionosphere during magnetic superstorms. **Geophysical Research Lett.**, v. 32, n. L12S05, 2005.

- FEJER, B. G; EMMERT, J. T. Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19-21 October 1998 magnetic storm. **J. Geophysical Research**, 108, A12, 1454, 2003.

- GONZALEZ, W. D; JOSELYN, J. A; KAMIDE, Y; KROEHL, H. W; ROSTOKER, G; TSURUTANI, B. T; VASYLIUNAS, V. M. What is a magnetic storm? **J. Geophysical Research**, v. 99, n. A4, p. 5771-5792, 1994.

- HOFMANN-WELLENHOF, B; LICHTENEGGER, H; COLLINS, J. Global Positioning System: Theory and Practice. 3. ed. Wien: Springer-Verlag, 1994.

- KAMIDE, Y; BAUMJOHANN, W; DAGLIS, I. A; GONZALEZ, W. D; GRANDE, M; JOSELYN, J. A; McPHERRON, R. L; PHILLIPS, J. L; REEVES, E. G. D; ROSTOKER, G; SHARMA, A. S; SINGER, H. J; TSURUTANI, B. T; VASYLIUNAS, V. M. Current understanding of magnetic storms: Stormsubstorm relationships. **J. Geophysical Research**, v. 103, n. A8, p. 17,705-17,728, 1998.

- KAPLAN, E. D; HEGARTY, C. J. **Understanding GPS: Principles and Applications.** 2. ed. Artech House, Inc., 2006.

- MARTINIS, C. R; MENDILLO, M. J; AARONS, J. Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. **J. Geophysical Research**, v. 110, n. A07306, 2005.

- MENDILLO, M; BAUMGARDNER, J; PI, X; SULTAN, P. J. Onset conditions for equatorial spread F. J. Geophysical Research, v. 97, p. 13,865-13,876, 1992.

- MENDILLO, M; LIN, B; AARONS, J. The application of GPS observations to equatorial aeronomy. **Radio Science**, v. 35, n. 3, p. 885-904, 2000.

- SAHAI, Y; BECKER-GUEDES, F; FAGUNDES, P. R; LIMA, W. L. C; OTSUKA, Y; HUANG, C. –S; ESPINOZA, E. S; PI, X; ABREU, A. J; BOLZAN, M. J. A; PILLAT, V. G; ABALDE, J. R; PIMENTA, A. A; BITTENCOURT, J. A. Response of nighttime equatorial and low latitude F-region to the geomagnetic storm of August 18, 2003, in the Brazilian sector. **Advances in Space Research**, n. 39, p. 1325-1334, 2007.

- SCHUNK, R. W; NAGY, A. F. **Ionospheres: Physics, Plasma Physics and Chemistry**. USA: Cambridge University Press, 2000.

- TSURUTANI, B. T; GONZALEZ, W. D. The interplanetary cause of magnetic storms: a review. In: Tsurutani, B. T; Gonzalez, W. D; Kamide, Y; Arballo, J. K. ed. Magnetic storms. Washington, DC, v. 98, 1997.

- WANNINGER, L. Effects of the Equatorial lonosphere on GPS. **GPS World,** p. 48-54, July, 1993.