CARACTERIZAÇÃO TERMO-ÓPTICA EM TINTA NANQUIM DILUÍDA EM TETRAHIDROFURANO

Jamil Saade, Adriana Lima, Egberto Munin, Marcos T. T. Pacheco, Viviane Pilla

Instituto de Pesquisa e Desenvolvimento – IP&D, Universidade do Vale do Paraíba. Av. Shishima Hifumi 2911 – Urbanova, 12244-000 – São José dos Campos, SP e-mail: saade@univap.br, vpilla@univap.br

Resumo- Os solventes utilizados para a diluição de materiais como corantes, polímeros e nanocristais, exercem influências importantes nas características dos materiais investigados, fazendo-se necessário sua caracterização termo-óptica. A escolha do solvente é então fundamental para a otimização de parâmetros como eficiência quântica da fluorescência (η), parametros térmicos como a difusividade térmica (D) e coeficiente de variação do índice de refração com a temperatura (dn/dT). Nesse trabalho aplicamos a técnica de Lente Térmica com dois feixes, feixe de excitação em 514.5 nm e feixe de prova em 632.8 nm, para determinação de parâmetros termo-ópticos como D, dn/dT, fração de energia convertida em calor (ϕ) e η em uma solução de Nanquim diluída em Tetrahidrofurano (THF).

Palavras-chave: Lente Térmica, Difusividade Térmica, coeficiente de variação do índice de refração com a temperatura. THF.

Área do Conhecimento: Física / Óptica

I Introdução

A Tinta Nanquim é um material corante que primitivamente vinha da China, preparada com negro-de-fumo (pó-de-sapato) coloidal empregada especialmente para desenhos aquarelas. Era retirada de glândulas dos animais cefalópodes. Além de tinta, também é usada para contrastar microorganismos ao microscópio e outros estudos (MAIMAN, 1960; BASOV, 1954). O Tetrahidrofurano (C₄H₈O) é um composto orgânico heterocíclico usado como solvente, obtido pela hidrogenação do furano. É freqüentemente usado na ciência dos polímeros e para síntese de álcoois primários. Porém, as suas propriedades termoópticas não foram muito investigadas ainda.

Por outro lado, os solventes utilizados para a diluição de materiais (polímeros, corantes, nanocristais) exercem influências importantes nas caracterísiticas das amostras investigadas. Sendo que, para um material ser candidato a aplicação tecnológica é necessário caracterizar suas propriedades termo-ópticas, que são dependentes de suas propriedades físicas (por exemplo: polarizabilidade eletrônica e coeficiente de expansão térmica linear). Dentre os principais parâmetros termo-ópticos, podemos citar: a difusividade térmica (D), que mede a resposta temporal do aquecimento local na amostra e depende da composição, micro-estrutura

condições de processamento do material; e o coeficiente de variação do índice de refração com a temperatura (dn/dT) que descreve uma mudança no índice devido a um tratamento térmico local (BAESSO, 1994; PILLA, 2002, 2004).

Nesse trabalho, aplicamos a técnica de lente térmica em amostras de tinta Nanquim diluídas em THF (Tetrahidrofurano) e água para obtenção de parâmetros termo-ópticos, como: D, dn/dT, fração de energia convertida em calor φ e eficiência quântica da fluorescência η. Em nosso conhecimento, os resultados obtidos para a solução Nanquim/THF são novos na literatura.

II Aspectos Teóricos

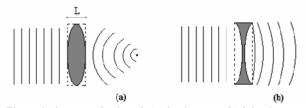
II.1 Técnica de Lente Térmica

A técnica de Lente Térmica (TL) é um método valioso para o estudo das propriedades termo-ópticas de diversos materiais ópticos (cristais, vidros ópticos, polímeros, soluções) (BAESSO, 1994; PILLA, 2002, 2004, 2006). O princípio básico dessa técnica consiste em medir o efeito devido o calor gerado na amostra pela absorção do feixe de laser Gaussiano TEM₀₀ de excitação. Esse aquecimento na amostra causa efeitos como: estresse, birefrigência, variação do

índice de refração, lente térmica e fraturas mecânicas.

A evolução temporal da intensidade central do feixe de prova I(t) é calculada pela teoria da integral de difração no regime *cw* na forma (PILLA, 2004, 2006):

$$I(t) = I(0) \left[1 - \frac{\theta}{2} tan^{-1} \left(\frac{2mV}{\left[(1+2m)^2 + V^2 \right]_{c}/2t + 1 + 2m + V^2} \right) \right]^2 (1)$$


$$m = \left(\frac{w_p}{w}\right)^2; \quad V = \frac{z_1}{z_0} \tag{2}$$

Em que w_p e w são respectivamente os raios dos feixes de prova e excitação. z_1 é a distância entre a amostra e a cintura do feixe de prova, z_0 é o parâmetro confocal do feixe de prova, I(0) é a intensidade do feixe quando t ou θ , é zero. A amplitude do sinal de LT é proporcional a θ = - Θ P_{abs} , sendo P_{abs} a potência absorvida do feixe de excitação pelo material investigado, e:

$$\Theta = \left(\frac{\varphi}{K\lambda_p}\right) \frac{dn}{dT} \tag{3}$$

em que K é a condutividade térmica do material (K= ρ CD, sendo ρ a densidade do material, C o calor específico e D a difusividade térmica). Como resultado, teremos um feixe divergente para dn/dT < 0 (efeito de defocalização), ou um feixe convergente para dn/dT > 0 (efeito de focalização) na região central do feixe no campo distante (Figura 1). A evolução temporal do sinal é característica do tempo de resposta τ_c escrito na forma:

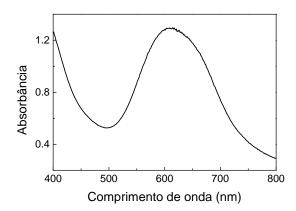
$$\tau_C = \frac{w^2}{4D} \tag{4}$$

Figura 1- Ilustração do efeito de (a) focalização e (b) defocalização da luz.

Os parâmetros θ e τ_c são determinados experimentalmente pelo ajuste teórico da curva transiente do sinal de LT (PILLA, 2002, 2004, 2006).

III. Material e Métodos

A tinta Nanquim (Sheaffer) foi diluída em THF (ou água) numa concentração de 0.02 ml de Nanquim para cada ml de solvente e introduzida em cubeta de quartzo para análise. O coeficiente de absorção foi medido por Beer-Lambert com a cubeta situada fora da posição focal. Os espectros de absorção e flluorescência foram obtidos utilizando os equipamentos Carry 50 Bio Varian e Fluoro Max-2, respectivamente.


A distância focal da lente d_f, w, w_p e z₀, foram determinados experimentalmente por varredura longitudinal da intensidade no centro do feixe de laser, em função do deslocamento na direção da propagação do feixe laser. Utilizamos uma íris de 10 μm de diâmetro acoplada em detector de silício posicionada em um trilho óptico com um suporte do tipo "xyz", em torno da distância focal da lente convergente, conectado a um multímetro digital. Os valores obtidos são w= 56.4 μm , w_p= 172 μm e z₀= (3.64 \pm 0.06) cm, respectivamente. Desta forma, foi possível determinar os parâmetros m e V (Eq. 2), necessários para aplicação da técnica de LT.

O arranjo experimental utilizado neste trabalho consiste no modo descasado de feixe duplo na posição da amostra, em que o feixe de prova e o feixe de excitação de cinturas diferentes apresentam interseção num pequeno ângulo (menor do que 2 graus). A realização das medidas de LT transientes foram realizadas por utilização de um chopper que controla a incidência do feixe de laser de excitação sob a amostra.

As amostras de Nanquim/THF e Nanquim/água analisadas, com as soluções acomodadas em uma cubeta de quartzo (L= 2 mm), foram posicionadas no foco do feixe de excitação para as medidas de LT.

IV. Resultados

Na Figura 2 apresentamos o espectro de absorbância da amostra Nanquim/THF colocada em uma cubeta de L= 1 cm. O coeficiente de absorção obtido pelo método de Beer-Lambert está em acordo com os resultados obtidos pelo espectro de absorbância. O seu espectro de emissão é apresentado na Figura 3, para diferentes valores de comprimento de onda de excitação (\(\lambda_e\)). Observamos que a solução de Nanquim/THF apresenta intensidade fluorescência maior sob a excitação no UV (300 nm) do que na região do visível (457, 514 e 550 nm). O valor de comprimento de onda de emissão médio obtido é <λ_{em}>= 456 nm para a excitação em 300 nm.

Figura 2- Espectro de absorbância para a solução Nanquim/THF.

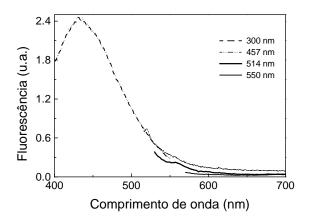


Figura 3- Espectro de fluorescência em solução Nanquim/THF sob diferentes valores de comprimento de onda de excitação $\lambda_{\rm e.}$

Na Figura 4 apresentamos uma curva transiente de lente térmica para a solução Nanquim/THF. O ajuste teórico é realizado pela Eq. (1). Com isso, podemos determinar o tempo característico da formação da lente térmica τ_c e a sua amplitude que é proporcional a θ , apresentados na legenda da Figura 4.

Na Figura 5, os valores de θ são função apresentados em da potência. comportamento Observamos um linear intervalo de potência de excitação utilizado. Usando as Equações 4 e 3, e considerando os valores de K = 0.14 W/mK (GE, 2005) e λ_p = 632.8 nm, obtemos o valor médio da difusividade térmica como sendo D= $(1.13 \pm 0.03) \times 10^{-3} \text{ cm}^2/\text{s}, \text{ e}$ $\varphi dn/dT = -(3.17 \pm 0.01) \times 10^{-4} \text{ K}^{-1}$, respectivamente. Na aproximação de ∞≈ 1. temos dn/dT= -3.2 x 10⁻⁴ K⁻¹ para a solução Nanquim/THF.

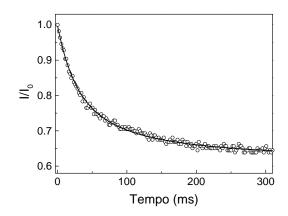
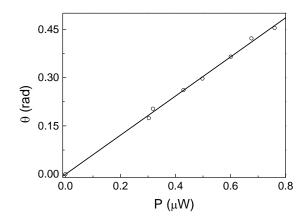



Figura 4- Curva transiente de LT para amostra de Nanquim/THF, valores obtidos são: θ = (0.4541 \pm 0.0009) rad e τ_c = (7.78 \pm 0.06) ms.

Figura 5- θ versus potência de excitação P para a solução de Tinta/THF.

Por outro lado, o valor de ϕ pode ser determinado, pela técnica de LT, na forma (PILLA, 2006, 2003):

$$\varphi = \frac{\Theta}{\Theta_{S}} = 1 - \eta \left(\frac{\lambda_{e}}{\langle \lambda_{em} \rangle} \right)$$
 (5)

em que Θ_s = (1/K λ_P)dn/dT. Considerando para o solvente THF dn/dT= -5 x10⁻⁴ K⁻¹ estimado utilizando os resultados da referência de NIKOGOSYAN , obtemos ϕ =0.63. Utilizando o valor de $<\lambda_{em}>$ = 456 nm, calculamos o valor de η = 0.3. Em complementação, medidas de LT foram realizadas em tinta Nanquim diluída em água destilada. Os resultados obtidos para os parâmetros D e dn/dT foram (1.4 \pm 0.2) x 10⁻³ cm⁻²/s, e -(0.8 \pm 0.1) x 10⁻⁴ K⁻¹ (considerando ϕ =1), respectivamente. Esses resultados estão em bom acordo com os resultados obtidos na literatura para a água (GEORGES, 1999; BROCHARD, 1997).

V. Conclusão

Aplicamos a técnica de Lente Térmica para determinação de parâmetros termo-ópticos da amostra Nanquim dissolvida em Tetrahidrofurano (THF), os valores obtidos são: D= $(1.1 \pm 0.1) \times 10^{-3} \text{ cm}^2/\text{s}, \ \phi= 0.63 \ \text{e} \ \eta= 0.3.$ Os resultados obtidos para a difusividade térmica e o coeficiente de variação do índice de refração com a temperatura para a solução Nanquim/água estão em bom acordo com os valores da literatura.

VI. Bibliografia

- BAESSO, M. L; SHEN, J; SNOOK, R. D. J. Appl. Phys. **75** (1994) 3732.
- BASOV, N.G. and PROKHOROV, A.M. Soviet Phys. JETP English Transl., **27**(1954) 431
- BROCHARD, P; MAZZA, V. G; CABANEL, R. J. Opt. Soc. Am. B, **14** (1997) 405.
- GE, Z; KANG, Y; TATON, T. A; BRAUN, P. V; CAHILL, D. G. Nano Letters **5** (2005) 531.
- GEORGES, J; PARIS, T. Analy. Chim. Acta **386** (1999) 287.
- MAIMAN, T.H., Nature 187 (1960) 493.
- NIKOGOSYAN, D. N. "Properties of Optical and Laser-Related Materials" A Handbook (Wiley, Chichester, UK, 1997).
- PILLA, V; BALOGH, D.T; FARIA, R. M; CATUNDA, T. Rev. Scient. Instruments **74** (2003) 866.
- PILLA, V; CATUNDA, T; BALOGH, D. T; FARIA, R. M; ZILIO, S. C. J. Polym. Sc., Part B Polym. Physics **40** (2002) 1949.
- PILLA, V; CHILLCCE, E. F; RODRIGUEZ, E; CATUNDA, T; MUNIN, E; CESAR, C. L; BARBOSA, L. C. J. Non-Crist. Solids **352** (2006) 3508
- PILLA, V; LIMA, S. M; CATUNDA, T. Catunda; MEDINA, A; BAESSO, M. L; JENSSEN, H. P; CASSANHO, A. J. Opt. Soc. Am. B. **21** (2004) 1784.