VARIABILIDADE ESPACIAL E TEMPORAL DO CARBONO ORGÂNICO TOTAL (COT) EM DIFERENTES SISTEMAS DE MANEJOS NA CAFEICULTURA DO CERRADO

Marcos André Silva Souza¹, Suelen Martins de Oliveira², Suellen Oliveira Arantes³, Elias Nascentes Borges⁴

¹Mestrando em Agronomia – UFU, Bolsista Embrapa, e-mail: s.s.m.andre@uol.com.br ^{2,3} Aluna de graduação - UFU e-mail:suelenagro@yahoo.com.br ⁴Professor Dr., ICIAG-UFU e-mail: Elias@ufu.br

Resumo- A matéria orgânica do solo tem papel importante tanto na formação quanto na estabilidade dos agregados. Práticas de cultivo com revolvimento aumentam a oxidação da matéria orgânica pela quebra dos agregados do solo, expondo novas superfícies ao ataque de microrganismos. A adoção de sistemas de manejo mais conservacionista pode ao longo do tempo, contribuir para o aumento da matéria orgânica do solo. Neste sentido o objetivo desse trabalho foi avaliar a distribuição espacial e temporal do Carbono Orgânico Total (COT) em três sítios de amostragens submetido a diferentes sistemas de manejo na cafeicultura Os resultados mostraram que as distâncias utilizadas para o estudo da variabilidade espacial foi insuficiente para a detecção da dependência espacial em todas os sistemas empregados e o sistemas conduzido com herbicida apresentou maior uniformidade de distribuição do (COT).

Palavras-chave: Matéria Orgânica; Latossolo; Café Área do Conhecimento: Ciências Agrárias

Introdução

Práticas de manejo utilizadas na agricultura influenciam no teor de matéria orgânica e causam mudanças na taxa de ciclagem no solo (CAMBARDELLA e ELLIOT, 1994). A introdução da atividade agrícola em áreas sob vegetação natural sempre é acompanhada por decréscimo na taxa de biodegração (BROWN e LUGO, 1990).

Dentre as várias frações da matéria orgânica do solo, há diferença quanto à sua degradação, sendo algumas mais sensíveis às mudanças causadas pelos sistemas de manejo. Por exemplo, os resíduos de plantas e outros compartimentos mais lábeis são rapidamente reduzidos após a introdução do cultivo (CAMBARDELLA e ELLIOT, 1992).

Dessa forma a caracterização, quantificação e a sua distribuição espacial e temporal se fazem necessária para o monitoramento desse atributo nos diferentes sistemas de manejo adotados pelos agricultores o que irá possibilitar selecionar aqueles sistemas de manejo que possibilitam maior produtividade das culturas, com menor interferência negativa ao meio ambiente.

Desse modo, uma amostragem simples ao acaso nem sempre é a forma eficiente de estimar os parâmetros relacionados aos solos, porque a maioria das propriedades possui, além da variabilidade casual (intemperismo diferencial pontual, erosão e adição diferencial, fatores biológicos e hidrológicos diferenciais, erros analíticos e de amostragem, etc.), uma variabilidade espacial (sistemática) que pode ser

explicadas em função da paisagem, aspectos geomorfológicos, de fatores de formação e do próprio uso e manejo do solo.

Desta forma o objetivo deste trabalho foi Avaliar a distribuição espacial e temporal do carbono orgânico total em três sítios de amostragem na cultura do cafeeiro: entre rodado do trator (entre linha do cafeeiro), sob copa da planta (saia do cafeeiro) e rodado do trator (local de tráfego de máquinas e implementos agrícolas) sob sistema fertirrigado e sequeiro, com emprego de grade e herbicida.

Materiais e Métodos

O experimento foi conduzido em um Latossolo Vermelho distroférrico, durante um ano, na Fazenda Experimental do Glória, pertencente à Universidade Federal de Uberlândia, MG.O café (*Coffea arabica*) cultivado na área é o "Catuaí Vermelho 99" com 2,5 anos de idade, plantado no espaçamento de 3,5 x 1,0 m (uma planta por cova).

As amostragens foram realizadas observandose as condições de tráfego de máquinas dentro da lavoura nos seguintes pontos: rodado do trator (linha de tráfego); meio da rua e à saia do cafeeiro. Após georrefenciamento dos pontos eqüidistantes de 4 m x 3,5m, foram efetuadas amostragens de solos, de quatro em quatro meses, nas camadas de 0 a 20 cm e 20 – 40 cm destinadas às análises.

Determinou-se os teores de carbono orgânico total (COT) das amostras retiradas nos sítios

amostrais para as camadas de 0 a 20 e 20 a 40 cm triturando-as em almofariz e passando-as em peneira de 0,210 mm por oxidação da matéria orgânica por via úmida, utilizando-se solução de $K_2Cr_2O_7$ em meio ácido (YEOMANS e BREMER, 1988).

Após o processamento das amostras e as determinações de laboratório foi realizada médios os parâmetros da geoestatísticas utilizando utilizando-se o programa computacional de GS+for Windows para a caracterização espacial e temporal do atributo estudado.

Resultados e Discussões

Os coeficientes de assimetria e curtose próximo de zero indicam uma tendência de distribuição simétrica dos dados de COT. Este é um fato favorável para a estatística espacial, conforme argumenta GUIMARÃES, (2001).

Verifica-se que a variabilidade espacial pelo coeficiente de variação (CV) para COT está em torno de 20%, exceto para herbicida na camada de 20 a 40 cm em março, indicando que esse atributo apresenta uma variação, que pode ser considerada e deve estar associado ao fato de que a análise da Tabela 1 foi feita desconsiderando-se a posição da amostragem no campo. Já para o comparativo entre os sistemas de manejo nota-se ainda pela mesma tabela, para a época de março/04, que o sistema de condução com uso de grade apresentou os menores teores de COT, na camada de 0 a 20 cm.

Dessa forma o uso da grade, aliado às condições climáticas e atividade microbiana promove a decomposição acelerada dos resíduos vegetais. Para as demais épocas de amostragem, é verificado o mesmo comportamento descrito quando da comparação entre os sistemas de manejo em ambas profundidades (0 a 20 ; 20 a 40 cm).

Para o comparativo de camada verificam-se maiores valores de COT na camada de 0 a 20 cm, embora o efeito de diluição promovido pela amostragem (0 a 20 cm) venha a reduzir esta diferença, já que a maior concentração de carbono no solo localiza-se nos primeiros centímetros (0 a 5cm). Dessa forma, a amostragem em camada estratificada em menor profundidade é mais indicada para a comparação entre os sistemas de manejo.

Tabela 1 - Momentos estatísticos do carbono orgânico total (COT), em g kg⁻¹, nos dois tipos de manejo das plantas infestantes, sob diferentes épocas de avaliação e camada de solo.

Manejo	média	Vα	DP	cv	Min.	Max.	Ass.	Curt				
Março de 2004												
Cama ada de O a 20 cm												
Herbicida	17,74	11,58	3,40	19	6,35	22,93	-1,12	0,97				
Grade	14,94	11,72	3,42	23	6,91	22,93	-0,18	-0,49				
Camada de 20 a 40 cm												
Herbicida	11,65	24,72	4,97	42	2,21	21,83	-0,4	-0,97				
Grade	11,96	9,20	3,03	25	4,41	18,79	0,04	-0,07				
	Julho de 2004											
	Cannada de Oa 20 cm											
Herbicida	13,23	7,35	2,71	20	6,74	19,83	-0,10	-0,38				
Grade	14,01	9,00	3,00	21	6,18	19,92	-0,28	-0,41				
Camada de 20 a 40 cm												
Herbicida	14,06	7,77	2,79	20	7,55	19,92	-0,01	-0,56				
Grade	16,22	6,70	2,60	16	8,35	20,93	-0,53	-0,06				
	Dezembro 2004											
Camada de Oa 20 cm												
Herbicida	12,48	4,96	2,23	18	8,78	18,73	0,43	-0,46				
Grade	12,99	9,00	3,00	23	5,08	18,82	-0,28	-0,41				
Canna ada de 20 a 40 cm.												
Herbicida	13,05	7,78	2,79	21	6,45	18,82	-0,01	-0,56				
Grade	15,13	6,70	2,59	17	7,25	19,83	-0,53	-0,06				

Var - variância; DP - desvio padrão; CV - coeficiente de variação; Min - valor mínimo; Max - valor máximo; Ass - coeficiente de assimetria; Curt - coeficiente de curtose.

Observa-se pela Tabela 2 que, para a época de março, os diferentes sistemas de manejo apresentaram dependência espacial representada pelos modelos, LSP (Linear sem patamar) e LCP (Linear com patamar) em ambas as camadas estudadas. O primeiro modelo indica um fenômeno caracterizado por uma infinita capacidade de dispersão, sendo o tamanho da malha insuficiente para detectar tal dependência.

Já o segundo modelo representado por LCP inicialmente indica que os valores semivariância tendem a crescer e estagnarem próximo a um valor máximo determinado de patamar. Neste modelo ocorre uma pequena dependência espacial inicial, distância na qual atinge o patamar, representada pelo alcance (a), indicando que as amostragens realizadas por distâncias menores que o alcance estão correlacionadas uma às outras. Isso permite que facam interpolações para espacamentos menores do que os amostrados, dessa forma, o alcance é a linha divisória para a aplicação da geoestatística e a estatística clássica. Para a época de julho e dezembro é verificado o mesmo comportamento descrito para a época de março.

Tabela 2 – Modelos de semivariogramas ajustados aos valores experimentais de carbono orgânico total em diferentes manejos, camadas e épocas de avaliação.

Manejo	Camada	Modelo	C.	Cu+C	ā	ъ					
Março de 2004											
	0-20cm	LSP	8,7751		-	0,0872					
Herbicida	20-40 cm.	LCP	2,0800	9,6500	5,6						
	0-20cm	LCP	2,8800	12,000	5,4	-					
Cirade	20-40 cm.	LCP	1,3000	8,7400	5,2	-					
	Jalho de 2004										
	0-20cm	LCP	0,0100	7,8200	4,4	-					
Herbicida	20-40 cm.	LCP	1,6800	8,0070	49	-					
	0.20cm	LSP	7,0313		-	0,0471					
Cirade	20-40 cm.	LSP	4,3932		-	0,1021					
Dezembro de 2004											
	0-20cm	LCP	0,4300	4,9950	4,4	-					
Herbicida	20-40 cm.	LCP	1,6800	8,007	4,9	-					
	0.20cm	LSP	7,0313		-	0,0470					
Cirade	20-40 டை	LSP	4,3932		-	0,1020					

 C_o – efeito pepita (kg.dm⁻³); C_o + C – patamar (kg.dm⁻³); a – alcance (m); b - coeficiente angular; EPP- efeito pepita puro; LSP - linear sem patamar; LCP – linear com patamar

Mapeamento do Carbono Orgânico do Solo

O mapeamento foi obtido fazendo-se uso dos valores obtidos por meio do processo de krigagem. Nota-se, pela Figura 1, época de março, que para a superfície os teores de carbono em grande parte da área encontram-se na faixa de 20,3 a 23,1 g.kg ¹ superestimando os valores apresentados no uso da estatística clássica (Tabela 1). Estes maiores teores devem-se a uma melhor estimativa dos valores de média pelo uso da geoestatística em comparação a estatística clássica, pois esta última não leva em consideração à distância entre as amostragens, tonando-se menos precisa em relação à geoestatística.

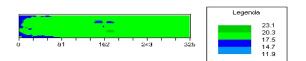


Figura 1 — Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de herbicida, na camada 0 a 20 cm, em Março de 2004.

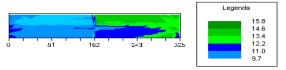


Figura 2 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de herbicida, na camada 20 a 40 cm, em Março de 2004.

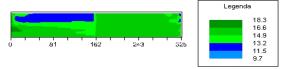


Figura 3 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de grade, na camada 0 a 20 cm, em Março de 2004.

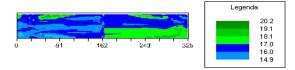


Figura 4 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de grade, na camada 20 a 40 cm, em março de 2004.

Já para o sistema que emprega a grade em ambas as camadas verificam-se, pelas Figuras 3 e 4, que as faixas de teores de carbono orgânico total são muito próximas dos valores encontrados pela análise clássica, valores da ordem de 14,9 a 16,9 g kg⁻¹ para a profundidade de 0 a 20 cm e 14,9 a 16,0 g kg⁻¹ para a subsuperficie (20 a 40cm).

Para as épocas de julho e dezembro/04, verifica-se, pelas Figuras 5 a 12, que os teores de carbono independente do sistema de manejo empregado encontra-se em grande parte da área na faixa de 11 a 15 g kg⁻¹ Verifica-se ainda pelas Figuras 1, 5 e 9, que o manejo com aplicação de herbicida na camada de 0 a 20 cm apresentou para as diferentes épocas de amostragem maior uniformidade nos teores de carbono orgânico total, justificado pelo acúmulo em superfície o que leva ao longo do tempo, à uniformização da área para este atributo. Outro fato que deve ser levado em consideração, é o emprego da arruação que pelo revolvimento a até 5 cm de profundidade, tende a homogeneizar os teores de COT, principalmente onde não há revolvimento do solo (herbicida).

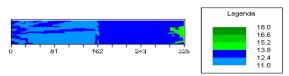


Figura 5 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de herbicida, na camada 0 a 20 cm, em julho de 2004.

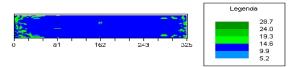


Figura 6 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de herbicida, na camada 20 a 40 cm, em julho de 2004.

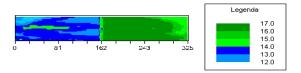


Figura 7 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de grade, na camada 0 a 20 cm, em julho de 2004.

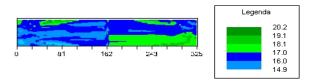


Figura 8 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de grade, na camada 20 a 40 cm, em julho de 2004.

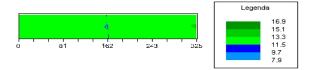


Figura 9 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de herbicida, na camada 0 a 20 cm, em dezembro de 2004.

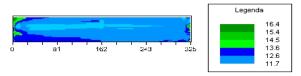


Figura 10 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de herbicida, na camada 20 a 40 cm, em dezembro de 2004.

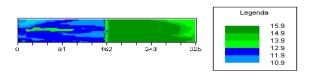


Figura 11 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de grade, na camada 0 a 20 cm, em

dezembro de 2004.

Figura 12 – Distribuição espacial do carbono orgânico total (COT), para o sistema de manejo com aplicação de grade, na profundidade 20 a 40 cm, em dezembro de 2004.

Conclusões

Existe um forte indício de tendência de dependência espacial do atributo avaliado, merecendo estudos específicos de análise espacial nos diferentes sítios avaliados.

A geoestatística, quando utilizada para a realização de estimativas, pode corrigir problemas e deficiências da estatística não espacial, mudando conceitos e decisões.

Referências

- -BROWN, S.; LUGO, A. E. Effects of forest clearing and succession on the carbon and nitrogen of soils in Puerto Rico and US Virgin Islands. **Plant and Soil**, Virgin Islands, v.124, n. 1, p.53-64, 1990.
- -CAMBARDELLA, C. A., ELLIOT, E. T. Particulate organic-matter changes across a grassland cultivation sequence. **Soil Science Society of America Journal**, Madison, v.56, n.3, p. 777-783, 1992.
- -CAMBARDELLA, C. A.; MOORMAN, T. B.; NOVAK, J. M.; PARKIN, T. B.; KARLEN, D. L.; TURCO, R. F.; KONOPKA, A. E. **Field-scale variability of soil properties in central lowa soils**. Soil Science Society of America Journal, Madison, v.58, n.5, p.1501-1511, 1994.
- GUIMARÃES, E. C.; **Geoestatística básica e aplicada**. Uberlândia, 2001. 48 p. Apostila.
- YEOMANS, J.C. & BREMNER, J.M. A rapid and precise methodfor routine determination of organic carbon in soil. Comm. Soil Sci. Plant Anal., 19:1467-1476, 1988.