PREPARAÇÃO E CARACTERIZAÇÃO DE COMPÓSITOS HÍBRIDOS A PARTIR DA CELULOSE DO BAGAÇO DE CANA E ZrO₂.nH₂O OBTIDOS PELO MÉTODO DA PRECIPITAÇÃO EM SOLUÇÃO HOMOGÊNEA

¹Faculdade de Engenharia Química de Lorena/ DEQUI, Rodovia Itajubá- Lorena km 74,5 CEP: 12600-980, danimulinari@bol.com.br

Palavras-chave: Celulose Branqueada, ZrO₂.nH₂O, Compósito, Precipitação em Solução Homogênea **Área do Conhecimento:** III - Engenharia

Resumo- Este trabalho descreve a preparação da celulose do bagaço de cana- de- açúcar recoberta com ZrO₂.nH₂O pelo método da precipitação em solução homogênea, resultando no compósito híbrido orgânico-inorgânico Cel/ ZrO₂.nH₂O. Posteriormente, estes compósitos foram caracterizados por difração de raios-X, termogravimetria e microscopia eletrônica de varredura. Os resultados obtidos mostraram que a quantidade de material enxertado variou de 13,5 a 25,7%.

Introdução

A celulose e seus derivados tem sido freqüentemente usada na obtenção de materiais compósitos, pois eles apresentam algumas vantagens intrínsecas tais como: baixo custo, biodegradabilidade e facilidade na preparação e manuseio [1]. No entanto, a celulose é um polímero relativamente inerte devido aos grupos hidroxila, os quais estão envolvidos em ligações de hidrogênio intra e intermolecular [2]. Além disso, as fortes interações entre estes grupos são responsáveis pela pequena reatividade do polímero com reagentes orgânicos e inorgânicos [3].

Nos últimos anos, tem sido estudado a modificação química da celulose com partículas de óxidos metálicos com a formação de Cel/ M_xO_y [2] . Pesquisas nesta área tem demonstrado que, dependendo do óxido metálico, o material híbrido pode ser usado para diferentes aplicações: Al_2O_3 e ZrO_2 para adsorção de cátions como: Fe(III), Cu(II) e Zn(II) [4 e 5].

Uma das vantagens do uso da celulose é na construção de filtros químicos, devido a facilidade em moldá-la na forma de fibras ou membranas e de ser um material com caráter renovável. Para formar o filtro é preciso recobri-la com películas extremamente finas, constituídas de óxidos metálicos de titânio, zircônio, antimônio, alumínio ou nióbio [6].

Com o objetivo de dar continuidade aos trabalhos que vem sendo desenvolvidos no Grupo de Novos Materiais DEQUI/FAENQUIL a

proposta para este trabalho é preparar e caracterizar o compósito celulose/ óxido de zircônio obtidos pelo método da precipitação em solução homogênea, a partir do bagaço de cana. Este trabalho dará suporte para estudos posteriores envolvendo a adsorção de íons fosfatos e íons sulfatos a fim de utilizá-lo como filtro químico com potencial para ser usado em laboratórios e indústrias.

Materiais e Métodos

A separação dos materiais lignocelulósicos foi realizada no DEBIQ/FAENQUIL, onde o bagaço foi preparado com solução de $\rm H_2SO_4$ 10% (reator de 350L a 120°C , 10 min), com a finalidade de separar as pentosanas. Com isso, a celulignina foi deslignificada com solução de NaOH 1% (reator de 350L a 100° C, 1 hora) obtendo assim a polpa bruta [7].

A celulose branqueada foi feita em escala de laboratório, empregando-se clorito de sódio, para remover a lignina residual contida na polpa bruta. Pesou-se 50g de polpa bruta e transferiu-se para um erlenmeyer de 500mL, onde foram adicionados água destilada, ácido acético glacial e clorito de sódio. O sistema foi mantido a 80°C por 1 hora. A polpa branqueada foi então seca em uma estufa à 50°C por 12 horas.

O óxido de zircônio hidratado foi preparado conforme método desenvolvido por Silva [8].

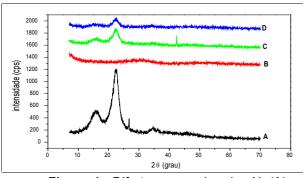
A preparação dos compósitos celulose/ óxido de zircônio hidratado pelo método da precipitação em solução homogênea, consistiu na dissolução

² Faculdade de Engenharia Química de Lorena/ DEQUI, Rodovia Itajubá- Lorena km 74,5 CEP: 12600-980, gjardim@dequi.faenquil.br

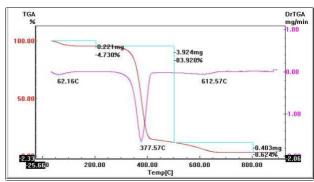
³ Faculdade de Engenharia Química de Lorena/ DEQUI, Rodovia Itajubá- Lorena km 74,5 CEP: 12600-980, mlcaetano@dequi.faenquil.br

de 2g de oxicloreto de zircônio em meio ácido, ao qual foram adicionados 5g de celulose. Posteriormente 20g de uréia (agente precipitante) foi adicionado ao sistema e aquecido a 90°C. O material então foi filtrado a vácuo, e lavado com água deionizada até isenção total de íons cloretos. Em seguida secou-se o material numa estufa a 50° C.

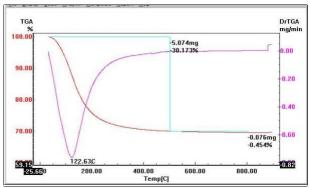
O mesmo procedimento foi repetido porém variando-se a quantidade de massa do oxicloreto de zircônio (3g).

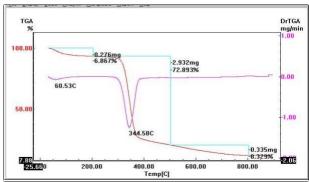

Os materiais preparados foram caracterizados por difratometria de raios-X, termogravimetria (TG) e microscopia eletrônica de varredura (MEV). Para termogravimetria foi usada uma termobalança da marca SHIMADZU, modelo TGA-50, com razão de aquecimento de 20°C por minuto em fluxo de nitrogênio no intervalo de temperatura de 40 a 900 °C. Os difratogramas de raios- X foram obtidos em um difratômetro da marca RICH SEIFERT, com fonte de radiação de CuK α para valores de 2 θ variando de 10 a 70 °C. As micrografias foram obtidas em um microscópio eletrônico de varredura LEO1450 VP à baixo vácuo, usando elétrons retroespalhados para a celulose e os compósitos e elétrons secundários para os óxidos.

Resultados


A preparação do óxido e dos compósitos foi bem demorada, devido o sistema ser aquecido (cerca de 135 horas). Os compósitos obtidos mostraram-se bem rígidos em relação a celulose pura.

A Figura 1 mostra os difratogramas de raios-X dos compósitos obtidos, bem como do ZrO₂.nH₂O e da celulose.


As Figuras de 2 a 5 mostram as curvas termogravimétricas da celulose, do $ZrO_2.nH_2O$ e dos compósitos $Cel/ZrO_2.nH_2O$ (2 e 3g).


Figura 1 - Difratogramas de raios-X: (A) Celulose; (B) ZrO₂.nH₂O; (C) Cel/ ZrO₂.nH₂O-2g e (D) Cel/ ZrO₂.nH₂O-3g

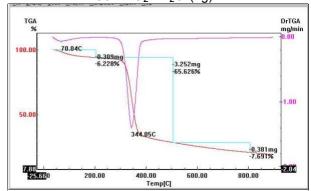

Figura 2- Curva Termogravimétrica da Celulose Branqueada.

Figura 3- Curva Termogravimétrica do ZrO₂.nH₂O.

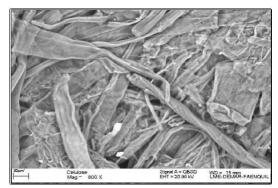
Figura 4- Curva Termogravimétrica do Compósito Cel/ ZrO₂.nH₂O (2g).

Figura 5- Curva Termogravimétrica do Compósito Cel/ ZrO₂.nH₂O (3g).

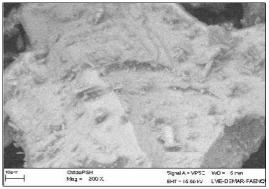
A Tabela 1 mostra os dados obtidos por meio da curvas termogravimétricas da celulose, do $ZrO_2.nH_2O$ e dos compósitos $Cel/\ ZrO_2.nH_2O$ (2 e

3g), podendo dessa maneira determinar a quantidade de resíduo de cada material.

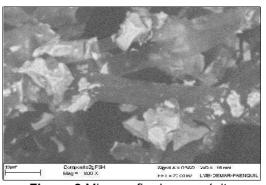
Tabela 1 – Dados obtidos por meio das curvas TG, com perdas de massa na curva TG (m), nos respectivos intervalos de temperatura (ΔT) e as temperaturas de perda obtidas pela curva diferencial (dm).


Material	dm (°C)	ΔT (°C)	m (%)	Resíduo (%)
Celulose	62,16 377,57 612,57	40 – 200 200 – 500 500 - 800	4,730 83,920 8,624 ∑=97,274	2,726
ZrO ₂ .nH ₂ O	122,63	40 – 500 500 - 800	30,173 0,454 ∑ = 0,627	69,373
Cel/ ZrO ₂ .nH ₂ O (2g)	60,53 344,58	40 – 200 200 - 500 500 – 800	6,867 72,893 8,329 ∑=88,089	11,911
Cel/ ZrO ₂ .nH ₂ O (3g)	70,04 344,05	40 – 200 200 – 500 500 – 800	6,228 65,624 7,691 ∑=79,543	20,457

A Tabela 2 mostra as porcentagens de $ZrO_2.nH_2O$ enxertado na celulose, obtidas pelas curvas termogravimétricas (Figuras 2 a 5).


Tabela 2 – Porcentagem de material enxertado nos compósitos.

Material	Massa inicial (mg)	Massa perdida (mg)	Massa final (mg)	Material enxertado (%)
Cel/ ZrO _{2.} nH ₂ O (2g)	4,023	0,480	3,543	13,55
Cel/ ZrO _{2.} nH ₂ O (3g)	4,955	1,013	3,942	25,70


As Figuras de 6 a 9 mostram as micrografias obtidas para a celulose, para o ZrO₂.nH₂O e para os compósitos Cel/ ZrO₂.nH₂O (2 e 3g), com as mesmas ampliações (X800).

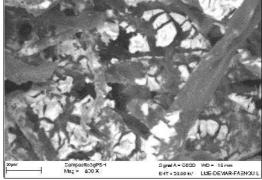

Figura 6-Micrografia da celulose branqueada800X.

Figura 7-Micrografia do ZrO₂.nH₂O 800X.

Figura 8-Micrografia do compósito Cel/ ZrO₂.nH₂O 800X(2g).

Figura 9-Micrografia do compósito Cel/ ZrO₂.nH₂O 800X (3g).

Discussão

De acordo com a Figura 1 o difratograma de raios-X da celulose mostra característica de

material cristalino, com pico intenso (Figura 1-A). Já o difratograma de raios-X do $ZrO_2.nH_2O$ mostra característica de material amorfo, sem picos definidos (Figura1-B), apenas um ombro próximo a 30° .

Com isso, observou-se que ao se recobrir a celulose com $ZrO_2.nH_2O$, há uma progressiva redução da cristalinidade, atribuída ao caráter amorfo do $ZrO_2.nH_2O$ (Figura 1-C e 1-D).

Conforme a Tabela 1 as análises feitas por termogravimetria indicam uma diminuição da estabilidade térmica do compósito Cel/ZrO₂.nH₂O em comparação com a celulose pura.

Pode-se observar que no intervalo de 200-900°C houve um decréscimo da massa perdida da celulose pura para os compósitos, isto se deve à presença do óxido metálico na superfície da celulose retardando a degradação dos mesmos.

Pode-se observar também que houve um aumento na quantidade de óxido de zircônio depositado. Isto pode ser visto pela quantidade de resíduo apresentado nos compósitos (12 e 20%).

De acordo com a Tabela 2 pode-se observar que a relação $Cel//ZrO_2.nH_2O$ do compósitos 3g apresenta uma porcentagem de enxertia de 25,7, ou seja um acréscimo de 88% em relação ao compósito 2g.

A micrografia eletrônica de varredura (MEV) da celulose (Figura 6) mostra que as fibras apresentam formas cilíndricas. Já a Figura 7 do $ZrO_2.nH_2O$ permite avaliar que o óxido obtido apresenta-se como um aglomerado pouco poroso.

Pode-se observar pelas Figuras 8 e 9 que o óxido não recobriu a celulose de forma homogênea.

Conclusão

Os resultados obtidos mostraram que a presença do óxido na formação do compósito diminui a cristalinidade da celulose. O mesmo pôde ser observado quanto a estabilidade térmica dos compósitos. Porém os compósitos apresentaram-se mais rígidos, o que pode levar a aplicações de materiais estruturados.

Agradecimentos

Os autores agradecem a CAPES por terem financiado esta pesquisa.

Referências

[1] YOUNG, R.A; Utilization of Natural Fibers: Characterization, Modification and Applications, in: LEÃO, A . L; CARVALHO, F. X.; FROLLINI, E. (Ed.), Lignocellulosic- plastics Composites, , São Paulo,p.2, 1997..

- [2] GUSHIKEM, Y; TOLEDO, E. A.; Preparation of oxide-coated cellulose fiber, in: K. Esumi (Ed.), Polymers Interfaces and Emulsions, Marcel Dekker, New York, 199, p. 509.
- [3] KENNEDY, J. F. e CABRAL, J. M. S.; Transition Metal Chem., 11, 1985, p.41.
- [4] LAZARIN, A. M.; GUSHIKEM, Y., and de Castro, S. C., J. Mater, 8, 1996, p.1758.
- [5] PADILHA, P. M.; CAMPOS, J. T. S.; MOREIRA, J. C.; FEDERICI, C. C.; Química Nova, 18 (6), 1995, p. 529.
- [6] SILVA, L. R. D.; GUSHIKEM, Y; KUBOTA, L. T., Colloids and Surfaces B: Biointerfaces, 6, 1996, p.309.
- [7] DA SILVA, P. J.; Estudo Cinético Deslignificação Etanol-Água da Casca de Arroz. São Carlos: USP/ Instituto de Química, 1997, p.44 (Tese de Doutorado)
- [8] SILVA, G. L. J. P.; SILVA, M. L. C. P.; CAETANO, T; Materials Research, vol.5, n° 2, 149-153, 2002.