PRODUÇÃO DE PADRÕES CROMATOGRÁFICOS PARA DOSAGEM DA COMPOSIÇÃO DE ÉSTERES DE ÁCIDOS GRAXOS PRESENTES NO BIODIESEL

DANIELE URIOSTE, FRANCISCO C. BIAGGIO, HEIZIR F. DE CASTRO

Departamento de Engenharia Química, Faculdade de Engenharia Química de Lorena, Caixa Postal 116, 12606-970, Lorena, SP e-mail: urioste@dequi.faenquil.br

Palavras-chave: esterificação química, ácidos graxos, biodiesel

Área do Conhecimento: III-Engenharias

Resumo- O presente trabalho tem por objetivo produzir padrões cromatográficos (ésteres de ácidos graxos) por esterificação química de cloretos de acila com álcoois de cadeia curta para quantificar com maior precisão a formação de ésteres presentes no biodiesel, obtidos na interesterificação enzimática de óleos vegetais com álcoois de cadeia curta. Foram preparados ésteres, tomando como referência a composição em ácidos graxos presentes nos óleos de babaçu e dendê.

Introdução

A utilização de biodiesel como combustível tem apresentado um potencial promissor no mundo inteiro, não só pela sua enorme contribuição ao meio ambiente, com a redução qualitativa e quantitativa dos níveis de poluição ambiental, e como também a geração de energia renovável em substituição ao óleo diesel e outros derivados do petróleo [1,2].

Vários países vêm investindo na produção e viabilização comercial do biodiesel por meio de unidades de produção com diferentes capacidades, distribuídas particularmente na Europa, América do Norte e Ásia [3]. As pesquisas no Brasil também estão avançando gradativamente [4]. A Instituição ao Programa Nacional de Óleos Vegetais (OVEG I) realizou testes com óleos vegetais de composição química e grau de insaturação variados [4].

Dentre as matérias-primas mais utilizadas figuram os óleos de soja, babaçu, mamona e dendê e alguns tipos de óleos de fritura, como aqueles derivados do processamento industrial de alimentos para refeições industriais [5].

Visando reduzir a alta viscosidade dos óleos vegetais, diferentes alternativas têm sido consideradas, tais como: diluição; microemulsão com metanol ou etanol; decomposição térmica; craqueamento catalítico; e reação de interesterificação com álcool [1,2].

Entre essas, a interesterificação é a melhor escolha. Os ésteres de ácidos graxos obtidos são conhecidos como biodiesel e apresentam

características físicas semelhantes as do óleo diesel, podendo ser utilizados em motores do ciclo diesel sem nenhuma modificação [5,6].

Estudos anteriormente realizados apontam a emprego de viabilidade do catalisadores bioquímicos (lipases) para obtenção de biodiesel. Nesses trabalhos, o cálculo da conversão da reação foi baseado na formação do glicerol formado como sub-produto [1,2]. No entanto. recomendável que o monitoramento de uma reação seja efetuado tomando por base a formação do produto principal, neste caso especifico, ésteres de ácidos graxos.

Neste contexto, o presente trabalho tem por objetivo produzir padrões cromatográficos (ésteres de ácidos graxos) para quantificar com maior precisão a formação de ésteres obtidos na interesterificação enzimática de óleos vegetais com álcoois de cadeia curta. Foram preparados ésteres, tomando como referência a composição em ácidos graxos presentes nos óleos de babaçu e dendê.

Materiais e Métodos

Materiais: Os óleos de babaçu e de palma foram fornecidos pela Cognis (São Paulo, Brasil). A Tabela 1 apresenta as composições em ácidos graxos dos óleos vegetais em estudo (% m/v).

Tabela 1 - Composição de ácidos graxos em óleos vegetais

Ácido Graxo	Estrutura	Fórmula	Babaçu	Palma
Caprílico	8:0	C ₈ H ₁₆ O ₂	3,5	0
Cáprico	10:0	$C_{10}H_{20}O_2$	4,5	0

Láurico	12:0	$C_{12}H_{24}O_2$	44,7	0,1
Mirístico	14:0	$C_{14}H_{28}O_2$	17,5	1,2
Palmítico	16:0	$C_{16}H_{32}O_2$	9,7	46,8
Esteárico	18:0	$C_{18}H_{36}O_2$	3,1	3,8
Oléico	18:1	$C_{18}H_{34}O_2$	15,2	37,6
Linoleico	18:2	$C_{18}H_{32}O_2$	1,8	10,0
Linolênico	18:3	$C_{18}H_{30}O_2$	0	0
Eicosenóico	20:1	$C_{20}H_{38}O_2$	0	0,5

Foram utilizados ácidos graxos presentes na composição dos óleos vegetais. Como álcoois foram utilizados: etanol (99,5%, Vetec), propanol (99,5%, Reagen) e butanol (Merck, 99%), cloreto de tionila (SOCl₂) e toluol.

Síntese do cloreto de acila de ácido carboxílico empregando cloreto de tionila (SOCI 2): Os experimentos foram conduzidas em reatores fechados de 100 mL contendo 10 g de ácido graxo e 2.0 equivalente-gramas de SOCI2 por 24 h (agitação magnética de 200 rpm e 25°C) [7]. O SOCI2 residual foi removido do meio reacional por evaporação a vácuo (agitação magnética de 200 rpm e 25°C).

A reação de síntese do cloreto de acila esta sendo representado na Figura 1.

Figura 1 - Síntese do cloreto de acila de ácido carboxílico com $SOCl_2$.

Reação de esterificação química do cloreto de acila de ácido carboxílico empregando álcoois de cadeia curta: Os experimentos foram realizados em reatores fechados de 100 mL contendo 1.0 equivalente-grama de cloreto de acila de ácido carboxílico e 5.0 equivalente-grama de álcool (EtOH, PrOH ou ButOH) por 24 h (agitação magnética de 200 rpm e 25°C).

O HCl formado durante a reação e o álcool residual foram removidos do meio reacional por evaporação a vácuo (agitação magnética de 200 rpm e 25°C). A Figura 2 mostra a reação de esterificação química.

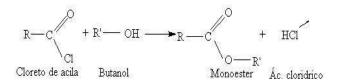


Figura 2 - Síntese de éster de ácido graxo por esterificação química do cloreto de acila de ácido carboxílico com ácool.

Os ésteres de ácidos graxos foram purificados por destilação a vácuo. Suas estruturas foram confirmadas pela análise de Ressonância Magnética Nuclear de Próton (RMN H¹), aparelho RMN 300MHz, modelo Mercury, marca Varian, processo FAPESP n⁰ 96/12.770-8.

A elaboração e calibração dos métodos de análise cromatográfica para determinação das concentrações (g/L) das composições em ésteres de etila, propila e butila presentes no biodiesel produzido por interesterificação enzimática de óleos vegetais com álcoois de cadeia curta (EtOH, PrOH e ButOH) foram realizadas preparando amostras dos ésteres diluídos em heptano (30g/L) e injetando no cromatógrafo a gás (Varian modelo CG 3800 com coluna empacotada 6ft S# DEGS WHP 80/100 mesh, HP), para determinação das temperaturas, tempos de retenção e concentração dos ésteres em relação ao padrão interno empregado para cada método.

Resultados

Analisando os espectros obtidos por RMN H^1 (CDCl₃, δ , 300Hz) pode-se constatar as estruturas dos ésteres de ácidos graxos (padrões cromatográficos) produzidos por esterificação química. A título de ilustração, apresenta-se na Figura 3 o espectro de RMN H^1 do éster octanoato de etila (C₁₂H₂₄O₂). RMN H^1 (CDCl₃, δ , 300Hz): 4,20-4,06(q, 2H); 2,29(t,2H); 1,7-1,52(m,2H); 1,39-1,16(m,15H; 0,88(t, 3H).

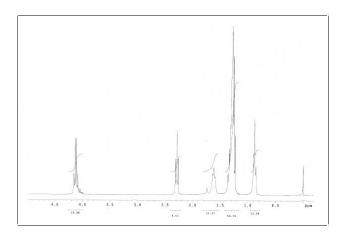


Figura 3 - Espectro RMN H^1 (CDCI₃, δ , ppm, 300Hz) do éster octanoato de etila.

Nas figuras 4 a 6 são apresentados os cromatogramas dos métodos analíticos para determinação das concentrações (g/L) das composições em ésteres de etila, propila e butila presentes no biodiesel.

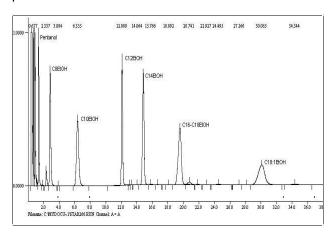


Figura 4 - Cromatograma do método de análise das concentrações (g/L) da composição em ésteres de etila.

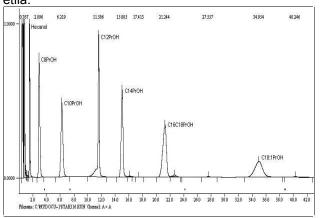


Figura 5 - Cromatograma do método de análise das concentrações (g/L) da composição em ésteres de propila.

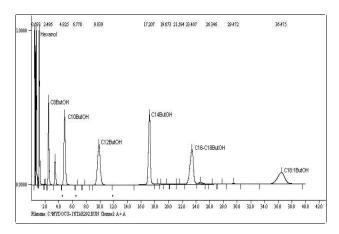


Figura 6 - Cromatograma do método de análise das concentrações (g/L) da composição em ésteres de butila.

A aplicação direta da metodologia desenvolvida é exemplificada na Figura 7 que apresenta a formação de ésteres de butila na reação de interesterificação enzimática do óleos de babaçu com butanol empregando Lipozyme IM20 a 7% (m/m) [2].

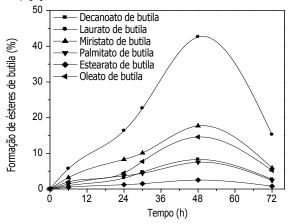


Figura 7- Formação de ésteres de butila na reação de interesterificação enzimática com óleo de babaçu (7% Lipozyme) [2].

Discussão

As elaborações dos métodos de análise cromatográfica revelou ser uma ferramenta importante no acompanhamento da interesterificação enzimática de óleos vegetais com álcoois de cadeia curta (EtOH, PrOH e ButOH), permitindo calcular a conversão da reação durante

o processo e facilitando possíveis correções operacionais (teor de água, complementação da quantidade de álcool e outros) tendo em vista que a análise tem um período máximo entre 38 a 43 min.

As condições de operação dos métodos estão apresentados na Tabela 2.

Tabela 2 – Condições de operação dos métodos de análise por cromatografia de fase gasosa.

Métodos	Condições de Operação do Método
Ésteres de etila	Adotando como padrão interno pentanol (21,09 g/L) com rampa de 120 °C por 10 min. e 170 °C por 25 min., taxa de 25 °C/min, atenuação A,B e C igual a 16, período total da análise de 38 minutos.
Ésteres de propila	Adotando como padrão interno hexanol (22,17 g/L) com rampa de 130 °C por 10 min. e 170 °C por 31.67 min., taxa de 30 °C/min, atenuação A,B e C igual a 16, período total da análise de 43 minutos.
Ésteres de butila	Adotando como padrão interno pentanol (22,17 g/L) com rampa de 150 °C por 15 min. e 180 °C por 24 min., taxa de 30 °C/min, atenuação A,B e C igual a 16, período total da análise de 40 minutos.

Agradecimentos

Os autores agradecem ao Conselho de Nacional Desenvolvimento Científico e Tecnológico (CNPq) e CAPES pelo apoio financeiro recebido.

Referências

- [1] URIOSTE, D.; MIRANDA, M.; CASTRO, H. F. Produção de biodiesel por catálise enzimática a partir do óleo de babaçu e butanol. *In: SOCIEDADE BRASILEIRA DE BIOTECNOLOGIA* ENZITEC2004, Anais Enzitec 2004. 2004.
- [2] URIOSTE, D.; CASTRO, H. F. Interesterificação enzimática do óleo de babaçu com álcoois de cadeia curta visando a obtenção de biodiesel. *In:* VII INIC ENCONTRO DE INICIAÇÃO CIENTÍFICA/ III EPG ENCONTRO DE PÓS GRADUAÇÃO LATINO AMERICANO , Anais VII INIC/III EPG: Universidade do Vale do Paraíba, v. 1, p. 1-6, 2003.
- [3] MITTELBACH, M.; In: Commercialization of biodiesel: Producing a Quality Fuel. Conference Proceedings, Boise, Idaho, USA, p. 125, 9 a 10 de julho 1997

- [4] MINISTÉRIO DA INDÚSTRIA E DO COMÉRCIO, MIC. Óleos vegetais ¾ experiência de uso automotivo desenvolvida pelo programa OVEG I, Secretaria de Tecnologia Industrial, Coordenadoria de Informações Tecnológicas, Brasília, DF, 1985.
- [5] COSTA NETO, P. R.; ROSSI, L. F. S.; ZAGONEL, G. F.; RAMOS, L. P. Produção de biocombustíveis alternativo ao óleo diesel através da transesterificação de óleo de soja usado em frituras. **Quím. Nova**, v. 23, n. 4, p. 531-537, 2000.
- [6] SCHUCHARDDT, U.; SERCHEL, R.; VARGAS, R. M. Transesterification of vegetable oils: a review, **J. Braz. Chem Soc.** v. 9, n. 1, p. 199-210, 1998.
- [7] TIETZE, L. F.; EICHER, T. (1988) Reactions and sintheses in the organic chemistry laboratory. University Science Books, Mill Valley, California.